[1]
McCumber D E. Effect of ac impedance on dc volt-Age current characteristics of superconductor weak link junctions,. Appl. Phys. , 1968 , vol. 39, pp.3113-3118.
DOI: 10.1063/1.1656743
Google Scholar
[2]
Y. Wang, W.W. Xu and G. Zh. Sun, etal. The Mea surement System of Statistical Distribution of the Switching Current of a Single Josephson Junction,. ACTA ELECTRONICA SINICA,2007, vol 35, pp.823-826.
Google Scholar
[3]
F.L. Liu T.G. Zhou and D. Ch. Wang, etal. Influence of Josephson Junction Parameters on Shapiro Steps,. ACTA ELECTRONICA SINICA,May, 2009, vol. 37, pp.957-960.
Google Scholar
[4]
Joana Matos Dias, António Dourado, A self-organizing fuzzy controller with a fixed maximum number of rules and an adaptive similarity factor,. Fuzzy Sets and Systems, 1999, vol. 103, p.27–48.
DOI: 10.1016/s0165-0114(97)00192-9
Google Scholar
[5]
M.T. Yassen, Chaos control of chaotic dynamical systems using backstepping design,. Chaos Solitons & Fractals, 2006, vol. 27 p.537–548.
DOI: 10.1016/j.chaos.2005.03.046
Google Scholar
[6]
Chen M.Y., Han Z.Z., Controlling and synchronizing chaotic Genesio system via nonlinear feedback control,. Chaos Solitons & Fractals, 2003, vol. 17 p.709–716.
DOI: 10.1016/s0960-0779(02)00487-3
Google Scholar
[7]
J. Ma, Q.Y. Wang and W.Y. Jin, et al, Control chaos in the Hindmarsh-Rose neuron by using intermittent feedback with one variable,. Chinese Physics Letters, 2008, vol. 25, p.3582–3585.
DOI: 10.1088/0256-307x/25/10/017
Google Scholar
[8]
Marat Rafikov, José Manoel Balthazar, On control and synchronization in chaotic and hyperchaotic systems via linear feedback control,. Communications in Nonlinear Science and Numerical Simulation, 2008, vol. 13 p.1246–1255.
DOI: 10.1016/j.cnsns.2006.12.011
Google Scholar
[9]
Y.C. Tian and F.R. Gao, Adaptive control of chaotic continuous-time system with delay,. Physica D: Nonlinear Phenomena, 1998, vol. 117 pp. l–12.
DOI: 10.1016/s0167-2789(96)00319-3
Google Scholar
[10]
Aline Souza de Paula, Marcelo Amorim Savi, A multiparameter chaos control method based on OGY approach,. Chaos, Solitons & Fractals, 2009, vol. 40 p.1376–1390.
DOI: 10.1016/j.chaos.2007.09.056
Google Scholar
[11]
H. Wang, Z.Z. Han, W. Zhang and Q.Y. Xie, Synchronization of unified chaotic systems with uncertain parameters based on the CLF,. Nonlinear Analysis: Real World Applications, 2009, vol. 10 p.715–722.
DOI: 10.1016/j.nonrwa.2007.10.025
Google Scholar
[12]
W.G. Yu, Finite-time stabilization of three-dimensional chaotic systems based on CLF,. Physics Letters A, 2010, vol. 374 p.3021–3024.
DOI: 10.1016/j.physleta.2010.05.040
Google Scholar
[13]
Y.L. Feng and K. Shen. Controlling chaos in RCL-shunted Josephson junction by delayed linear feedback,. Chinese Physics B, Jan. 2008, vol. 17, pp.111-116.
DOI: 10.1088/1674-1056/17/1/020
Google Scholar