[1]
H. W. Posamentier, R. J. Davies, J. A. Cartwright, & L. Wood, Seismic geomorphology- an overview From: Davies, R. J., H. W. Posamentier, L. Wood, & J. A. Cartwright, Seismic Geomorphology: Applications to Hydrocarbon Exploration and Production. Geological Society, London, 2007 Special Publications, 277, 1-14.
DOI: 10.1144/gsl.sp.2007.277.01.01
Google Scholar
[2]
P. R. Vail, R. M. Mitchum, & S. Thompson, III 1977. Seismic stratigraphy and global changes of sea level, part 3: relative changes of sea level from coastal onlap. In: PAYTON, C. E. (ed. ) Seismic Stratigraphy -Applications to Hydrocarbon Exploration. American Association of Petroleum Geologists Memoirs, 26, 63-81.
DOI: 10.1306/m26490c5
Google Scholar
[3]
H. W. Posamentier. Seismic stratigraphy into the next millennium; a focus on 3D seismic data. American Association of Petroleum Geologists Annual Conference, New Orleans, LA, 16-19 Aril, 2000, A 118.
Google Scholar
[4]
Hongliu Zeng, S.C. Henry, J. P. Riola. Stratal slicing, partII: Real 3-D seismic data [J]. Geophysics, 1998, 63(2): 514-522.
DOI: 10.1190/1.1444352
Google Scholar
[5]
A. R. Brown, C. G. Dahm, R. J. Graebner. A stratigraphic case history using three-dimensional seismic data in t he Gulf of Thailand [J]. Geophysical Prospecting , 1981, 29(3): 327-349.
DOI: 10.1111/j.1365-2478.1981.tb01017.x
Google Scholar
[6]
Hongliu, Zeng 1994. Facies-guided 3-D seismic modeling and reservoir characterization: Ph.D. dissertation thesis [D], University of Texas at Austin, Austin, 164 p.
Google Scholar
[7]
H. W. Posamentier, G. A, Dorn, M. J. Cole, et al. Imaging elements of depositional systems with 3-D seismic data: a case study. Gulf Coast Section SEPM Foundation, 17th Annual Research Conference, Houston, 1996[C]: 213~228.
DOI: 10.5724/gcs.96.17.0213
Google Scholar
[8]
Osamu Takano, H. Arato, T. Nakanishi, T. Matsuoka, and T. Saeki, Impact of the development of 3D seismic technology on sedimentology. Butsuri-Tansa = Geophysical Exploration (June 2006), 59(3): 225-231.
DOI: 10.3124/segj.59.225
Google Scholar
[9]
M. J. Gee, R. L. Gawthorpe, & S. J. Friedmann. Triggering and evolution of a giant submarine landslide, offshore Angola, revealed by 3D seismic stratigraphy and geomorphology. Journal of Sedimentary Research, 2006, v. 76, 9–19.
DOI: 10.2110/jsr.2006.02
Google Scholar
[10]
D. E. Sawyer, P. B. Flemings, R. C. Shipp, & C. D. Winker. Seismic geomorphology, lithology, and evolution of the late Pleistocene Mars-Ursa turbidite region, Mississippi Canyon area, northern Gulf of Mexico. AAPG Bulletin, v. 91, no. 2 (February 2007), p.215.
DOI: 10.1306/08290605190
Google Scholar
[11]
A. D. Miall. Architecture and sequence stratigraphy of Pleistocene fluvial systems in the Malay Basin, based on seismic time-slice analysis. AAPG Bulletin, v. 86, no. 7 (July 2002), p.1201–1216.
DOI: 10.1306/61eedc56-173e-11d7-8645000102c1865d
Google Scholar
[12]
J. L. Masaferro, R. Bourne, J. C. Jauffred. 3D visualization of carbonate reservoirs [J]. The Leading Edge, 2003, 22(1): 18-25.
DOI: 10.1190/1.1542751
Google Scholar
[13]
Dengliang Gao. Application of three-dimensional seismic texture analysis with special reference to deep-marine facies discrimination and interpretation: Offshore Angola, west Africa [J]. AAPG Bulletin, 2007, 91 (12): 1665–1683.
DOI: 10.1306/08020706101
Google Scholar
[14]
J. M. Tebo & B.S. Hart. Use of volume-based 3D seismic attribute analysis to characterize physical property distribution: A case study to delineate sedimentologic heterogeneity at the Appleton field, southwest Alabama,U. S. A., Journal of Sedimentary Research, 2005, v. 75, 723–735.
DOI: 10.2110/jsr.2005.058
Google Scholar
[15]
Satinder Chopra, Doug Pruden, Vladimir Alexeev. Multi-attribute seismic analysis – tackling non-linearity. first break volume 22, December 2004. 43-47.
DOI: 10.3997/1365-2397.2004021
Google Scholar
[16]
J. E. Calderon, S. A. Ecioetril. & J. Castagna, Porosity and lithologic estimation using rock physics and multi-attribute transforms in Balcon Field, Colombia. The leading edge, February 2007, 142-150.
DOI: 10.1190/1.2542439
Google Scholar
[17]
M. Turhan. Seismic attributes. CSEG Recorder September, 2001, 49-56.
Google Scholar
[18]
D.P. Hampson, J.S. Schuelke, & J.A. Querien, Use of multiattribute transforms to predict log properties from seismic data. Geophysics.
DOI: 10.1190/1.1444899
Google Scholar
[2001]
66, 220-236.
Google Scholar
[19]
D.J. Leiphart, and B.S. Hart. Comparison of linear regression and a probabilistic neural network to predict porosity from 3-D seismic attributes in Lower Brushy Canyon channeled sandstones, southeast New Mexico. Geophysics.
DOI: 10.1190/1.1487080
Google Scholar
[2001]
66, 1349-1358.
Google Scholar
[20]
R. Hesse. Origin of chert: Diagenesis of biogenic siliceous sediments. In: McIlreath, I.A. & Morrow, D.W. (eds) Diagenesis. Geoscience Canada Reprint Series, 1990, 4, 227–252.
Google Scholar
[21]
G. Guerin, & D. Goldberg. Acoustic and elastic properties of calcareous ediments across a siliceous diagenetic front on the eastern US continental slope. Geophysical Research Letters, 1996, 23, 2697–2700.
DOI: 10.1029/96gl02188
Google Scholar
[22]
D. Meadows & J. R. Davies. Morphological development of basin-scale silica diagenetic fronts revealed with 2D seismic reflection data: offshore Sakhalin, Russian Far East. Journal of the Geological Society, London, Vol. 164, 2007, p.1193–1206.
DOI: 10.1144/0016-76492006-163
Google Scholar
[23]
R. Tada, 1991. Compaction and cementation in siliceous rocks and their possible effect on bedding enhancement, in Einsele, G., et al., eds., Cycles and Events in Stratigraphy: Berlin Heidelberg, Springer-Verlag, p.480–491.
Google Scholar
[24]
J. S. Compton. Porosity reduction and burial history of siliceous rocks from the Monterey and Sisquoc Formation, Point Pedernales area, California: Geological Society of America Bulletin, 1991, v. 103, p.625–636.
DOI: 10.1130/0016-7606(1991)103<0625:prabho>2.3.co;2
Google Scholar
[25]
R. J. Davies, J.A. Cartwright, & J. Rana. Giant hummocks in deep-water marine sediments: Evidence for large-scale differential compaction and density inversion during early burial: Geology, 1999, v. 27, p.907–910.
DOI: 10.1130/0091-7613(1999)027<0907:ghidwm>2.3.co;2
Google Scholar
[26]
D.C. Nobes, M.G. Langseth, S. Kuramoto, P. Holler, & N. Hirata, 1992. Comparison and correlation of physical-property results from Japan Sea Basin and rise sites, legs 127 and 128. In: Pisciotto, K.A., Ingle, J.C. Jr. et al. (eds) Proceedings of the Ocean Drilling Program, Scientific Results, 127/128. Ocean Drilling Program, College Station, TX, 75–1296.
DOI: 10.2973/odp.proc.sr.127128.219.1992
Google Scholar
[27]
R.J. Davies, and J. Cartwright. A fossilized opal A to opal CT transformation on the Northeast Atlantic Margin: Support for a significantly elevated palaeogeothermal gradient during the Neogene?: Basin Research, 2002, v. 14, p.467–486.
DOI: 10.1046/j.1365-2117.2002.00184.x
Google Scholar
[28]
J. A. Cartwright. The impact of 3D seismic data on the understanding of compaction, fluid flow and diagenesis in sedimentary basins. Journal of the Geological Society, London, Vol. 164, 2007, p.881–893.
DOI: 10.1144/0016-76492006-143
Google Scholar