Microwave Sintering of Barium Ferrite Nanoparticles Processed via Sol-Gel Method

Article Preview

Abstract:

Consolidated barium ferrite nanoparticles were expected to obtain better magnetic properties. Sol-gel method was used to produce the barium ferrite nanoparticles. Various calcination temperatures were set to obtain the single phase structure. XRD pattern and SEM image confirmed the nanoparticles with 48.66 nm and 70 nm, respectively. Compacted samples were sintered using microwave sintering and conventional furnace with various temperature and time. Magnetic measurement test shows that microwave sintered samples have better properties. The highest magnetic properties values for microwave sintered sample is obtained at 950°C for 60 minutes with coercivity (Hc) of 5565 Oersted, remanence (Br) of 1537 Gauss and saturation magnetization (Ms) of 37.04 emu/g.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 463-464)

Pages:

1468-1472

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. Liu, J. Wang, L-G. Gan, S-C. Ng: J. Magn Magn Mater. Vol. 195 (1999), pp.452-459.

Google Scholar

[2] D. Mishra, S. Anand, R.K. Panda, R. P. Das: Mat Chem Phys. Vol. 86 (2004) p.132–136.

Google Scholar

[3] M.M. Hessien, M. Radwan, M.M. Rashad: J. Anal. Appl. Pyrolysis. Vol. 78 (2007) p.282–287.

Google Scholar

[4] U. Topal, H. Ozkan, L. Dorosinskiiev: J Alloys Comp. Vol. 428 (2007) p.17–21.

Google Scholar

[5] W. Zhong, W. Ding, N. Zhang, J. Hong, Q. Yan, Y. Du: J. Magn Magn Mater. Vol. 168 (1997) pp.196-202.

Google Scholar

[6] A. Mali, A. Ataie: Scripta Materialia. Vol. 53 (2005) pp.1065-1070.

Google Scholar

[7] A. Mali, A. Ataie: J Alloys Comp. Vol. 399 (2005) p.245–250.

Google Scholar

[8] H. Shang, J. Wang, Q. Liu: Mat Sci Eng. Vol. 456 (2007) p.130–132.

Google Scholar

[9] G. Mu, X. Pan, N. Chen, K. Gan, M. Gu: Mat Res Bul, Vol. 43 (2008) p.1369–1375.

Google Scholar

[10] Y. Li, Q. Wang, H. Yang: Cur App Phys. Vol. 9 (2009) pp.1375-1380.

Google Scholar

[11] M. Mozaffari, M. Taheri, J. Amighian: J Magn Magn Mater. Vol. 321 (2009) p.1285–1289.

Google Scholar

[12] L. Junliang, Z. Wei, G. Cuijing, Z. Yanwei: J Alloy Comp. Vol. 479 (2009) p.863–869.

Google Scholar

[13] M. Gupta, W.W.L. Eugene, in: Microwaves and Metals, John Wiley and Sons Pte Ltd (2007).

Google Scholar

[14] J. Huang, H. Zhuang, W. Li: J Mat Res Bull. Vol. 38 (2003) pp.149-159.

Google Scholar

[15] P. Ren, J. Guan, X. Cheng: Mat Chem Phys. Vol. 98 (2006) p.90–94.

Google Scholar

[16] H. Sozeri: J Magn Magn Mater. Vol. 321 (2009) p.2717–2722.

Google Scholar

[17] X. Wang, D. Li, L. Lu, X. Wang, L. Zhang, Y. Liu: Mat Let. Vol. 28 (1996) pp.203-206.

Google Scholar

[18] S.R. Janasi, M. Emura, F.J.G. Landgraf, D. Rodrigues: J Magn Magn Mater. Vol. 238 (2002) p.168–172.

Google Scholar