Synthesis and Characterization of CeO2-ZrO2-Al2O3 with High Thermal Stability and Oxygen Storage Capacity from Pseudoboehmite Precursor

Article Preview

Abstract:

The surface and structural properties, thermal stability and oxygen storage capability are inverstigated in ceria-zirconia-alumina oxide with deposition coprecipitation method using the Pseudoboehmite precursor. X-ray diffraction (XRD), Brunauer-Emmet Teller method (BET), Transmission electron microscopy (TEM) and oxygen pulsing technique are used to character the prepared materials. The prepared ceria-zirconia-alumina oxides are highly dispersed composite solid solution. After calcination at 650 °C and 1000 °C respectively, these compounds can still keep the structural and textural stability and hold excellent oxygen storage capability.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 463-464)

Pages:

160-164

Citation:

Online since:

February 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Kašpar, P. Fornasiero: Catal. Today Vol. 77(2003), p.419.

Google Scholar

[2] S. Enzo, F. Delogu, R. Frattini, A. Primavera, A. Trovarelli: J. Mater Res Vol. 15(2000), p.1538.

Google Scholar

[3] E. Rohart, O. Larcher, S. Deutsch. C. Hedouin, H. Aimin, F. Fajardie, M. Allain, P. Macaudiere: Topics Catal Vol. 30-31(2004), p.417.

Google Scholar

[4] A.B. Lopez, K. Krishna, M. Makkee, J.A. Moulijn: J. Catal. Vol. 230(2005), p.237.

Google Scholar

[5] B.M. Reddy, P. Bharali, P. Saikia, A. Khan, S. Loridant, M. Muhler, W. Grünert: J. Phys. Chem. C Vol. 111(2007), p.1878.

DOI: 10.1021/jp068531i

Google Scholar

[6] P. Vidmar, P. Fornasiero, J. Kašpar, M. Graziani: J. Catal. Vol. 171(1997), p.160.

Google Scholar

[7] R. Brezny, M. Koranne, T. Egami, U.S. Patent 20020132732. (2002).

Google Scholar

[8] M.H. Yao, R.J. Baird, F.W. Kunz: J. Catal. Vol. 166(1997), p.67.

Google Scholar

[9] D.R. Monte, P. Fornasiero, J. . Kašpar, M. Graziani, J.M. Gatica, S. Bernal, H.A. Gomez: Chem. Commun. Vol. 21(2000), p.2167.

Google Scholar

[10] D.R. Monte, P. Fornasiero, S. Desinan, J. . Kašpar, J.M. Gatica, J.J. Calvino, E. Fonda: Chem. Mater. Vol. 162004), p.4273.

Google Scholar

[11] M. H. Zahir, Y. H. Ikuhara, S. Fujisaki, K. Sato, T. Nagano, Y. Iwamoto: J Mater Res, Vol. 22 (2007), p.3201.

Google Scholar

[12] Z.L. Wei, H.M. Li, X.Y. Zhang, S.H. Yan, Z. Lv, Y.Q. Chen, M.C. Gong: J. Alloys Compounds, Vol. 455(2008), p.322.

Google Scholar

[13] J. Wang, J. Wen, M.Q. Shen: J. Phys. Chem. C. Vol. 112(2008), p.5113.

Google Scholar

[14] B.M. Reddy, P. Saikia, P. Bharali: Catal. Surv. Asia, Vol. 12(2008), p.214.

Google Scholar

[15] J. Kašpar, P. Fornasiero: J. Solid State Chem. Vol. 171(2003), p.19.

Google Scholar

[16] V.A. Escribano, E.F. Lopez, M. Panizza, C. Resini, J.M.G. Amores, G. Busca: Solid State Sci. Vol. 5(2003), p.1369.

Google Scholar

[17] L.M. Lin, L.P. Li, G.S. Li, W.H. Su: Mater. Chem. Phys. Vol. 69(2001), p.236.

Google Scholar

[18] K. Nakano, T. Masui, G. Admpd. Vol. 344(2002), p.342.

Google Scholar