The Synthesis of Iron Oxides with Different Phases or Exposure Crystal Planes and their Catalytic Property for Propene Oxidation

Article Preview

Abstract:

Maghemite (γ-FeSubscript text2OSubscript text3) and hematite (α-Fe2O3) nanoparticles with various dominant exposure crystal planes were prepared by several different methods. The structure and the reducibility of these materials were investigated by XRD, Raman and H2-TPR technologies, and their catalytic performance for propene oxidation was also discussed. The maghemite (γ-FeSubscript text2OSubscript text3) showed a better reducibility than hematite (α-FeSubscript text2OSubscript text3), but its activity for propene oxidation is relatively lower. The exposure crystal plane of hematite has a significant influence on its catalytic activity for propene oxidation. Among the prepared four samples, the hematite-1 sample showed the best activity. The selective growth of any planes with a relative low density of Fe atoms for the α-FeSubscript text2OSubscript text3 catalyst would lead to an obvious decrease in the catalytic activity.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 463-464)

Pages:

189-193

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Zboril, M. Mashlan and D. Petridis: Chem. Mater. 14 (2002), 969.

Google Scholar

[2] S. Sakurai, A. Namai, K. Hashimoto and S. I Ohkoshi: J. Am. Chem. soc. 131 (2009), 18299.

Google Scholar

[3] A.J. Esswein, M.J. McMurdo, P.N. Ross, A.T. Bell and T.D. Tilley: J. Phys. Chem. C 113 (2009), 15068.

Google Scholar

[4] X. Zhang, R. Hirota, T. Kubota, Y. Yoneyama and N. Tsubaki: Catal. Commun. 13 (2011), 44.

Google Scholar

[5] X. Liu, J. Liu, Z. Chang, X. Sun and Y. Li: Catal. Commun. 12 (2011), 530.

Google Scholar

[6] P.L.J. Gunter, J.W. Niemantsverdriet, F.H. Ribeiro and G.A. Somorjai: Catal. Rev. Sci. Eng. 39 (1997), 77.

Google Scholar

[7] K. Zhou, X. Wang, X. Sun, Q. Peng and Y. Li: J. Catal. 229 (2005), 206.

Google Scholar

[8] X. Xie, Y. Li, Z. Q. Liu, M. Haruta and W. Shen: Nature 458 (2009), 746.

Google Scholar

[9] L.F. Liotta, M. Ousmane, G. Di Carlo, G. Pantaleo, G. Deganello, G. Marci, L. Retailleau and A. Giroir-Fendler: Appl. Catal. A 347 (2008), 81.

DOI: 10.1016/j.apcata.2008.05.038

Google Scholar

[10] J.Y. Luo, M. Meng, J. S. Yao, X. G. Li, Y. Q. Zha, X. Wang and T.Y. Zhang: Appl. Catal. B. 87 (2009), 92.

Google Scholar

[11] D.L.A. de Faria, S. Venaü ncio Silva and M.T. de Oliveira: J. Raman Spectrosc. 28 (1997), 873.

Google Scholar

[12] G. Magnacca, G. Cerrato, C. Morterra, M. Signoretto, F. Somma and F. Pinna: Chem. Mater. 15 (2003), 675.

DOI: 10.1021/cm021268n

Google Scholar