[1]
D.K. Pal, T. K., B. Raychaudhuri: Rapid tooling route selection and evaluation for sand and investment casting, 13th International Conference on Advanced Research in Virtual and Rapid Prototyping (2007), pp.455-463.
DOI: 10.1080/17452750701747088
Google Scholar
[2]
Chua, C. K., C. Feng: Rapid investment casting Direct and indirect approaches via model maker II, International Journal of Advanced Manufacturing Technology 25 (2005), p.26-32M.
DOI: 10.1007/s00170-004-1865-5
Google Scholar
[3]
Vaezi, M., D. Safaeian: Gas turbine blade manufacturing by use of epoxy resin tooling and silicone rubber moulding techniques, Rapid Prototyping Journal 17 (2011), pp.107-115.
DOI: 10.1108/13552541111113853
Google Scholar
[4]
Bartolo, P. J., Stereolithography Materials: Processes and Applications, Springer Science, (2011).
Google Scholar
[5]
Ian Gibson, D. W. R., Brent Stucker: Additive Manufacturing Technologies; Rapid Prototyping to direct digital manufacturing, Springer (2009).
DOI: 10.1007/978-1-4939-2113-3
Google Scholar
[6]
Shan, Z., Y. Yan: Rapid manufacture of metal tooling by rapid prototyping, International Journal of Advanced Manufacturing Technology 21 (2003), pp.469-475.
DOI: 10.1007/s001700300055
Google Scholar
[7]
Xing Ai, J. and C. Li, Integrated product design using Rapid Prototyping Technology and Rapid Tooling in Concurrent Approach, Materials Science Forum (2004), pp.471-472: 672-676.
DOI: 10.4028/www.scientific.net/msf.471-472.672
Google Scholar
[8]
Ferreira, J. C. and A. Mateus: A numerical and experimental study of fracture in RP stereolithography patterns and ceramic shells for investment casting, Journal of Materials Processing Technology 134 (2003), pp.135-144.
DOI: 10.1016/s0924-0136(02)01034-8
Google Scholar
[9]
Hague, R. a. and P. M. Dickens: Stresses created in ceramic shells using QuickCastTM models, Proceedings of the Solid Freeform Austin (1995).
Google Scholar
[10]
Hague, R. and P. M. Dickens: Improvements in investment casting with stereolithography Patterns, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture (2005), pp.215-11.
DOI: 10.1243/0954405011515046
Google Scholar
[11]
Hague, R., G. D'Costa: Structural design and resin drainage characteristics of QuickCast 2. 0, Rapid Prototyping Journal 7 (2001), pp.66-72.
DOI: 10.1108/13552540110386682
Google Scholar
[12]
Norouzi, Y., S. Rahmati: A novel lattice structure for SL investment casting patterns, Rapid Prototyping Journal 15 (2009), pp.255-263.
DOI: 10.1108/13552540910979776
Google Scholar
[13]
Society, A. F.: Investment casting enters low-volume production market with rapid prototyping patterns, Engineered Casting Solutions 7 (2005), pp.43-44.
Google Scholar
[14]
Tromans, G.: Developments in Rapid Casting, Profesional Engineering Publishing (2004).
Google Scholar
[15]
Harun, W. S. W., S. Safian, H. Idris: Evaluation of ABS patterns produced from FDM for investment casting process, 4th International Conference on Computational Methods and Experiments in Materials Characterisation May 17 - May 19, New Forest, United Kingdom, (2009).
DOI: 10.2495/mc090301
Google Scholar
[16]
Harun, W. S. W., S. Sharif, H. Idris: Characteristic studies of collapsibility of ABS patterns produced from FDM for investment casting, Suite 1C, Joseph's Well, Hanover Walk, Leeds, LS3 1AB, United Kingdom (2009), Maney Publishing.
DOI: 10.1179/143307509x441513
Google Scholar
[17]
Lee, C. W., C. K. Chua: Rapid investment casting Direct and indirect approaches via fused deposition modelling, International Journal of Advanced Manufacturing Technology (2004), p.23, 93-101.
DOI: 10.1007/s00170-003-1694-y
Google Scholar
[18]
Yan, Y., S.: Rapid Prototyping and Manufacturing Technology: Principle, Representative Technics, Applications, and Development Trends, Tsinghua Science & Technology 14 (2009), pp.1-12.
DOI: 10.1016/s1007-0214(09)70059-8
Google Scholar
[19]
Hague, R., G. D'Costa: Structural design and resin drainage characteristics of QuickCast 2. 0, Rapid Prototyping Journal 7 (2001), pp.66-72.
DOI: 10.1108/13552540110386682
Google Scholar
[20]
Kulkarni P, D. D.: On the Integration of Layered Manufacturing and Material Removal Process, International Journal of Machine Science and Engineering 122 (2000), p.100–108.
Google Scholar
[21]
Galantucci, L. M., F. Lavecchia: Experimental study aiming to enhance the surface finish of fused deposition modeled parts, CIRP Annals - Manufacturing Technology 58 (2009), pp.189-192.
DOI: 10.1016/j.cirp.2009.03.071
Google Scholar
[22]
Galantucci, L. M., F. Lavecchia: Quantitative analysis of a chemical treatment to reduce roughness of parts fabricated using fused deposition modeling, CIRP Annals - Manufacturing Technology 59 (2010), pp.247-250.
DOI: 10.1016/j.cirp.2010.03.074
Google Scholar
[23]
Wang, S. and A. G. Miranda: A study of investment casting with plastic patterns, materials and manufacturing processes 25(12) (2010), pp.1482-1488.
DOI: 10.1080/10426914.2010.529585
Google Scholar