[1]
A. Fujishima, X. Zhang, D. A. Trykc. TiO2 photocatalysis and related surface phenomena [J]. Surf. Sci. Rep., 2008, 63:515-582.
DOI: 10.1016/j.surfrep.2008.10.001
Google Scholar
[2]
M. Iwasaki, M. Hara, H. Kawada, et al. Cobalt Ion-Doped TiO2 Photocatalyst response to visible light [J]. J. Colloid. Interf. Sci., 2000, 224(1):202-204.
DOI: 10.1006/jcis.1999.6694
Google Scholar
[3]
J. W. Tang, P. X. Wu, S. Y. Zeng, et al. Research progress of titanium dioxide visible2light photocatalysts [J]. Modern Chemical Industry, 2005, 25 (2):25-28.
Google Scholar
[4]
Y. M. Cho, W. Y. Choi, C. H. Lee, et al. Visible light-Induced degradation of carbon tetrachloride on dye-Sensitized TiO2 [J]. Environ. Sci. Technol., 2001, 35(5): 966-970.
DOI: 10.1021/es001245e
Google Scholar
[5]
M. Anpo, C. Bull. Preparation, characterization, and reactivities of highly functional titanium oxide-based photocatalysts able to operate under UV–visible light irradiation: approaches in realizing high efficiency in the use of visible light [J]. Chem. Soc. Jpn., 2004, 77(8):1427-1442.
DOI: 10.1246/bcsj.77.1427
Google Scholar
[6]
M. I. Litter. Heterogeneous photocatalysis transition metal ions in photocatalytic systems [J]. Appl. Catal. B: Environ, 1999, 23(2-3):89-114.
DOI: 10.1016/s0926-3373(99)00069-7
Google Scholar
[7]
L. Wu, J. C. Yu, X. Z. Fu. Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation [J]. J. Mol. Catal. A: Chem., 2006, 244(1-2):25-32.
DOI: 10.1016/j.molcata.2005.08.047
Google Scholar
[8]
M. C. Long, J. Cai, W. M. Cai, et al. Design of novel visible light responding semiconductor photocatalysts [J]. Prog. Chem, 2006, 18(9):1065-1075.
Google Scholar
[9]
T. Peng, X. Zhou, Y. Z. Li. Progress in research of visible-light-induced nano TiO2 photocatalysts [J]. Science paper Online, 2009, 4(4):302-307.
Google Scholar
[10]
M. Rycenga, C. M. Cobley, J. Zeng, W. Y. Li, C. H. Moran, Q. Zhang, D. Qin and Y. N. Xia. Controlling the synthesis and assembly of silver nanostructures for plasmatic applications [J]. Chem. Rev., 2011, 111(6):3669-3712.
DOI: 10.1021/cr100275d
Google Scholar
[11]
Z. K. Zheng, B. B. Huang, X. Y. Qin, X. Y. Zhang, Y. Dai. Facile in situ synthesis of visible-light plasmonic photocatalysts M@TiO2 (M=Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol [J]. J. Mater. Chem., 2011, 21:9079-9087.
DOI: 10.1039/c1jm10983a
Google Scholar
[12]
A. A. Ismail, D. W. Bahnemann. Mesostructured Pt/TiO2 Nanocomposites as highly active photocatalysts for the photooxidation of dichloroacetic acid [J]. J. Phys. Chem. C, 2011, 115(13):5784-5791.
DOI: 10.1021/jp110959b
Google Scholar
[13]
G. M. Guo, B. B. Yu, P. Yu, X. Chen. Synthesis and photocatalytic applications of Ag/TiO2-nanotubes [J]. Talanta, 2009, 79:570-575.
DOI: 10.1016/j.talanta.2009.04.036
Google Scholar
[14]
E. P. Reddy, L. Davydov, P. G. Smirniotis. Characterization of titania loaded V-, Fe-, and Cr-incorporated MCM-41 by XRD, TPR, UV vis, Raman, and XPS techniques [J]. J. Phys. Chem. B, 2002, 106(13):3394-3401.
DOI: 10.1021/jp0138983
Google Scholar
[15]
T. Sasaki, N. Koshizaki, J. W. Yoon, et al . Preparation of Pt/TiO2 nanocomposite thin films by pulsed lase deposition and their photoelectrochemical behaviors [J]. J. Photoch. Photobio. A, 2001, 145(1-2):11-16.
DOI: 10.1016/s1010-6030(01)00558-5
Google Scholar