[1]
H. Desimone, S. Beretta. Mechanisms of mixed mode fatigue crack propagation at rail butt-welds. International Journal of Fatigue, 2006, 28(5-6):635-642.
DOI: 10.1016/j.ijfatigue.2005.07.044
Google Scholar
[2]
C.W. Ziemian, M.M. Sharma, D.E. Whaley. Effect of flashing and upset sequences on microstructure, hardness, and tensile properties of welded structural steel joint. Materials & Design, 2012, 33:175-184.
DOI: 10.1016/j.matdes.2011.07.026
Google Scholar
[3]
S. Beretta, M. Boniardi, M. Carboni, et al. Mode II fatigue at rail butt-welds. Engineering Failure Analysis, 2005, 12:157-165.
DOI: 10.1016/j.engfailanal.2004.02.004
Google Scholar
[4]
H. Aglan, Y.X. Gan. Fatigue crack growth analysis of a premium rail steel. Journal of materials science, 2001, 36:389-397.
Google Scholar
[5]
H. Schmedders and K. Wick. Rail steels symp. Proc., Iron and Steel Society, Warrendale, PA, 1992, pp.35-48
Google Scholar
[6]
J.E. Garnham, R.G. Ding, C.L. Davis. Ductile inclusions in rail, subject to compressive rolling-sliding contact. Wear, 2010, 269(11-12): 733-746.
DOI: 10.1016/j.wear.2010.07.010
Google Scholar
[7]
K.W. Zhao, L.H. Zeng, X.H. Wang. Nonmetallic inclusion control of 350km/h high speed rail steel. Journal of Iron and Steel Research, International, 2009, 16(3):20-26,36.
DOI: 10.1016/s1006-706x(09)60038-8
Google Scholar
[8]
K. Sugino, H. Kageyama, T. Kuroki, et al. Metallurgical investigation of transverse defects in worn rails in service. Wear, 1996, 191(1-2): 141-148.
DOI: 10.1016/0043-1648(95)06745-0
Google Scholar
[9]
S.K. Dhua, Amitava Ray, S.K. Sen, et al. Influence of Nonmetallic Inclusion Characteristics on the Mechanical Properties of Rail Steel. Journal of Materials Engineering and Performance, 2000, 9(6):700-709.
DOI: 10.1361/105994900770345584
Google Scholar
[10]
A. Skyttebol, B.L. Josefson, J.W. Ringsberg. Fatigue crack growth in a welded rail under the influence of residual stresses. Engineering Fracture Mechanics, 2005, 72(2):271-285.
DOI: 10.1016/j.engfracmech.2004.04.009
Google Scholar