[1]
Information on http://www1.eere.energy.gov/hydrogenandfuelcells/tech_validation
Google Scholar
[2]
K. V. Kumar, M.C. M. Castro, M. Martinez-Escandell, M. Molina-Sabio and F. Rodriguez-Reinoso. Heat of adsorption and binding affinity for hydrogen on pitch-based activated carbons. Chemical Engineering Journal Vol. 168(2011), p.972
DOI: 10.1016/j.cej.2010.12.056
Google Scholar
[3]
R. Paggiaro, P. Bénard and W. Polifke. Cryo-adsorptive hydrogen storage on activated carbon. I: Thermodynamic analysis of adsorption vessels and comparison with liquid and compressed gas hydrogen storage. International Journal of Hydrogen Energy Vol. 35(2010), p.638
DOI: 10.1016/j.ijhydene.2009.10.108
Google Scholar
[4]
R. Paggiaro, F. Michl, P. Bénard and W. Polifke. Cryo-adsorptive hydrogen storage on activated carbon. II: Investigation of the thermal effects during filling at cryogenic temperatures. International Journal of Hydrogen Energy Vol. 35(2010), p.648
DOI: 10.1016/j.ijhydene.2009.11.013
Google Scholar
[5]
S. Satyapal, J. Petrovic, C. Read, G. Thomas and G. Ordaz. The U.S. Department of energy's national hydrogen storage project: Progress towards meeting hydrogen-powered vehicle requirements. Catalysis Today Vol. 120(2007), p.246
DOI: 10.1016/j.cattod.2006.09.022
Google Scholar
[6]
S.Z. Shi and J.Y. Hwang. Research frontier on new materials and concepts for hydrogen storage. International Journal of Hydrogen Energy Vol. 32(2007), p.224
DOI: 10.1016/j.ijhydene.2006.05.015
Google Scholar
[7]
Gigras, S.K. Bhatia, A.V.A. Kumar and A.L. Myers. Feasibility of tailoring for high isosteric heat to improve effectiveness of hydrogen storage in carbons. Carbon Vol. 45(2007), p.1043
DOI: 10.1016/j.carbon.2006.12.012
Google Scholar
[8]
L.F. Wang, F.H. Yang, R.T. Yang and M.A. Miller. Effect of surface oxygen groups in carbons on hydrogen storage by spillover. Industrial & Engineering Chemistry Research Vol. 48(2009), p.2920
DOI: 10.1021/ie8014507
Google Scholar
[9]
L. Zubizarreta, A. Arenillas and J.J. Pis. Carbon materials for H2 storage. International Journal of Hydrogen Energy Vol. 34(2009), p.4575
DOI: 10.1016/j.ijhydene.2008.07.112
Google Scholar
[10]
Y.X. Yang, L. Bourgeois, C.X. Zhao, D.Y. Zhao, A. Chaffee and P.A. Webley. Ordered micro-porous carbon molecular sieves containing well-dispersed platinum nanoparticles for hydrogen storage. Microporous and Mesoporous Materials Vol. 119(2009), p.39
DOI: 10.1016/j.micromeso.2008.09.044
Google Scholar
[11]
A.C. Dillon, P.A. Parilla, T. Gennett, K.E.H. Gilbert, J.L. Blackburn, Y.H. Kim, Y. Zhao, S.B. Zhang, J.L. Alleman, K.M. Jones, T. McDonald and M. Heben. Hydrogen storage in carbon-based materials, FY 2004 Progress Report, DOE Hydrogen Program, DOE, United States, 2005, p.245
DOI: 10.1149/ma2006-01/24/879
Google Scholar
[12]
Q.R. Zheng, A.Z. Gu, X.S. Lu and W.S. Lin. Temperature-dependent state of hydrogen molecules within the nanopore of multi-walled carbon nanotubes. International Journal of Hydrogen Energy Vol. 29(2004), p.481
DOI: 10.1016/s0360-3199(03)00105-8
Google Scholar
[13]
G.P. Meisner and Q.Y. Hu. High surface area microporous carbon materials for cryogenic hydrogen storage synthesized using new template-based and activation-based approaches. Nanotechnology Vol. 20(2009), p.1
DOI: 10.1088/0957-4484/20/20/204023
Google Scholar
[14]
R.K. Ahluwalia and J.K. Peng. Automotive hydrogen storage system using cryo-adsorption on activated carbon. International Journal of Hydrogen Energy Vol. 34(2009), p.5476
DOI: 10.1016/j.ijhydene.2009.05.023
Google Scholar
[15]
J.K. Johnson, J.A. Zollweg and K.E. Gubbins. The Lennard-Jones equation of state revisited. Molecular Physics Vol. 78(1993), p.591
DOI: 10.1080/00268979300100411
Google Scholar
[16]
B. Smit. Phase diagrams of lennard-jones fluids. Journal of Chemical Physics Vol. 96(1992), p.8639
DOI: 10.1063/1.462271
Google Scholar
[17]
Q.R. Zheng. A study of hydrogen storage by adsorption on multi-walled carbon nanotube. Thesis for Doctor Degree, School of Mechanical and Power Engineering, Shanghai Jiaotong University, 2002.
Google Scholar
[18]
D. Nicholson and N.G. Parsonage, in: Computer Simulation and the Statistical Mechanics of Adsorption, Academic Press, London, 1982.
Google Scholar
[19]
N.B. Vargaftik, in: Handbook of Physical Properties of Liquids and Gases, Pure Substances and Mixtures, 2nd ed., Hemisphere, Washington DC, 1975.
Google Scholar
[20]
Clark, in: The Theory of Adsorption and Catalysis, Academic Press, New York, 1970.
Google Scholar
[21]
J.A. Dunne, R. Mariwala, M. Rao, S. Sircar, R.J. Gorte and A.L. Myers. Calorimetric heats of adsorption and adsorption isotherms. 1. O2, N2, CO2, CH4, C2H6, and SF6 on Silicalite. Langmuir Vol. 12(1996), p.5888
DOI: 10.1021/la960495z
Google Scholar
[22]
A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune and M.J. Heben. Storage of hydrogen in single-walled carbon nanotubes. Nature Vol. 27(1997), p.377
DOI: 10.1038/386377a0
Google Scholar
[23]
A.C. Dillon and M.J. Heben. Hydrogen storage using carbon adsorbents: past, present and future. Applied Physics A-Materials Science & Processing Vol. 72(2001), p.133
DOI: 10.1007/s003390100788
Google Scholar
[24]
M. Heben. Activities in the DOE center of excellence for carbon-based hydrogen storage materials. Advanced Materials & Processes Vol. 163(2005), p.55
Google Scholar
[25]
G. Constabaris, J.J.R. Sams and J.G.D. Halsey. The interaction of H2, D2, CH4 and CD4 with graphitized carbon black. Journal of Physical Chemistry A Vol. 65(1961), p.367
Google Scholar
[26]
C.K. Chan, E. Tward and K.I. Boudaie. Adsorption isotherms and heats of adsorption of hydrogen, neon and nitrogen on activated charcoal. Cryogenics Vol. 34(1984), p.451
DOI: 10.1016/0011-2275(84)90001-8
Google Scholar
[27]
R. Yanik. Calculations of isosteric heats of adsorption of neon and hydrogen adsorbed on charcoal in the temperature range 22-90 K. Vacuum Vol. 47(1996), p.205
DOI: 10.1016/0042-207x(95)00222-7
Google Scholar
[28]
L. Zhou and Y.P. Zhou. comprehensive model for the adsorption of supercritical hydrogen on activated carbon. Industrial & Engineering Chemistry Research Vol. 35(1996), p.4166
DOI: 10.1021/ie960275g
Google Scholar
[29]
L. Zhou, Y.P. Zhou and Y. Sun. A comparative study of hydrogen adsorption on superactivated carbon versus carbon nanotubes. International Journal of Hydrogen Energy Vol. 29(2004), p.475
DOI: 10.1016/s0360-3199(03)00092-2
Google Scholar