[1]
Liu, G. R. Mesh free methods: moving beyond the finite element method. CRC PRESS; 2003.
Google Scholar
[2]
Gingold, R. A., and Monaghan, J. J. Smoothed particle hydrodynamics - theory and application to non-spherical stars. Monthly notices of the Royal Astronomical Society; 1977, 181: pp.375-389.
DOI: 10.1093/mnras/181.3.375
Google Scholar
[3]
Lucy, L. B. A numerical approach to the testing of the fission hypothesis. Astronomical Journal; 1977, 82: pp.1013-1024.
Google Scholar
[4]
Liu, W. K., Jun, S., and Zhang, Y. F. Reproducing Kernel Particle methods. International Journal for Numerical Methods in Fluids; 1995, 20 (8-9): pp.1081-1106.
DOI: 10.1002/fld.1650200824
Google Scholar
[5]
Nayroles, B., Touzot, G., and Villon, P. The diffuse approximation. Comptes Rendus de L Academie Des Science Serie Ii, 1991; 313 (3): pp.293-296.
Google Scholar
[6]
Nayroles, B., Touzot, G., and Villon, P. The Diffuse Approximation. Comptes Rendus de L Academie Des Science Serie Ii, 1991; 313 (2): pp.133-138.
Google Scholar
[7]
Belytschko, T., Gu., L., and Lu, Y. Y. Fracture and crack-growth by element free Galerkin methods. Modeling and Simulation in Material Science and Engineering, 1994; 2 (3A): pp.519-534.
DOI: 10.1088/0965-0393/2/3a/007
Google Scholar
[8]
Park, Y. Ch., and Leap, D. L. Modeling groundwater flow by the element free Galerkin (EFG) method. Geosciences Journal; 2000, 4 (3): pp.231-241.
DOI: 10.1007/bf02910141
Google Scholar
[9]
Atluri S. N., and Zhu, T. A mesh-less local Petrov-Galerkin (MLPG) approach in computational mechanics. Computational Mechanics; 1998, 22 (2): pp.117-127.
DOI: 10.1007/s004660050346
Google Scholar
[10]
Long, S.Y., and Atluri, S.N. "A meshless local Petrov-Galerkin for solving the bending problem of a thin plate", CMES-Computer Modeling in Engineering and Sciences; 2002, 3(1): pp.53-63.
Google Scholar
[11]
Arzani, H., and Afshar, M.H. Solving Poisson's equations by the discrete least square meshless method, in Boundary Elements and Other Mesh Reduction Methods XXVIII. WIT Press: Skiathos, Greece; 2006, pp.23-32.
DOI: 10.2495/be06003
Google Scholar
[12]
Arzani, H. Solving shallow depth water equations using element free network. Ph.D. thesis; Civil Engineering Faculty; Science and Technical University; Iran; 2007.
Google Scholar
[13]
Sato, T., and Matsumaro, T. Liquefaction and Ground Flow Analysis Using the Element Free Galerkin Method. Proceeding of KKCNN Symposium on Civil Engineering; 2003, pp.79-84.
Google Scholar
[14]
Tang, X.W., Sato, T., Luan, M.T., and Sawada, S. Three-D Element Free Galerkin Method Applied to Analysis of Earthquake Induced Liquefaction. Proceeding of the 7th China National Conference on Soil Dynamics, Tsinghua University Publishing House, Beijing; 2006, pp.487-492.
Google Scholar
[15]
Ying, J., Xiaowei, T., Maotian, L., and Qing, Yang. Adaptive element free Galerkin method applied to analysis of earthquake induced liquefaction. Earth Eng. & Eng. Vib., 7(2): 2008, pp.217-224.
DOI: 10.1007/s11803-008-0790-2
Google Scholar
[16]
Matsumaru, T., Sato, T., and Moon, Y. Mesh free analysis of liquefaction and ground flow phenomenon. Proceeding of 59th National Conference of JSCE (CD-ROM); 2004, pp.837-838.
Google Scholar
[17]
Ferronato, M., Mazzia, A., Pini, G., and Gambolati, G. A meshless method for axisymmetric poroelastic simulations: numerical study. International Journal of Numerical Method in Engineering, 70: 2007, pp.1346-1365.
DOI: 10.1002/nme.1931
Google Scholar
[18]
Firoozjaee, A.R., and Afshar, M.H. Discrete least square method (DLSM) for the solution of free surface seepage problem. International Journal of Civil Engineering; 2007, 5(2): pp.134-143.
Google Scholar
[19]
Kumar, P.R., Dodagoudar, G., and Roa, B. Mesh free modeling of two-dimensional contaminant transport through unsaturated porous media. In. D. Toll, C. Augarde, D. Gallipoli, & S. Wheeler (Eds), unsaturated soils: advances in geo-engineering, Taylor, & Francis Group, London; 2008, pp.861-866.
DOI: 10.1201/9780203884430.ch119
Google Scholar
[20]
Vermeer, P., Beuth, L., and Benz, T. A quasti-static method for large deformation problems in Geo-mechanics. In. geo-mechanics in the emerging social and technological age, Proc. 12th IACMAG; 2008, pp.55-63.
Google Scholar
[21]
Lancaster, P., and Salkauskas, K. Surfaces generated by moving least square methods. Math. Comput.; 23(3): 1981, pp.73-92.
Google Scholar
[22]
Segerlind, L.J. Applied finite element analysis. Second edition; John Wiley and Sons; 1984.
Google Scholar
[23]
Beiramin, M. K. Water conduction structures. Published by Isfahan Technical University; 1998.
Google Scholar
[24]
Seed, H.B., and Booker, J.R. Stabilization of potentially liquefiable sand deposits using gravel drains. Journal of Geotechnical Engineering Division; ASCE, 1977, Vol. 103, No.7, pp.757-768.
DOI: 10.1061/ajgeb6.0000453
Google Scholar
[25]
Seed, H.B., Martin, P. P., and Lysmer, J. The generation and dissipation of pore water pressures during soil liquefaction. Earthquake Engineering Research Center; Report No. EERC; 1975, pp.26-75.
Google Scholar