Mechanical Properties of Hydrogen Functionalized Graphyne - A Molecular Dynamics Investigation

Article Preview

Abstract:

In this paper the mechanical properties of a series of hydrogen functionalized graphyne are investigated through acting tensile loads on the monolayer networks. Molecular dynamics simulations are performed to calculate the fracture strains and corresponding maximum forces for pristine graphyne along both armchair and zigzag directions. Furthermore, hydrogen functionalized graphynes with different functionalization sites are analyzed to investigate the effect of functionlization on the mechanical performance. Finally, Young's modulus of all the investigated architectures are computed. The obtained results show that monolayer graphyne is mechanically stable with high strength and stiffness, and the mechanical performance can be tuned through structure engineering and functionalization.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 472-475)

Pages:

1813-1817

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. W. Cranford and M. J. Buehler: Modelling Simul. Mater. Sci. Eng. Vol. 19 (2011), p.054003

Google Scholar

[2] L. Xu, Y. Zheng and J. Zheng: Phys. Rev. B Vol. 82 (2010), p.195102

Google Scholar

[3] N. Wei, L. Xu, H. Q. Wang and J. C. Zheng: Nanotechnology Vol. 22 (2011), p.105705

Google Scholar

[4] N. Wei, Z. Fan, Y. Zheng, L. Xu, H. Wang and J. Zheng: Nanoscale (2011)

DOI: 10.1039/C1NR11200G

Google Scholar

[5] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov: Science Vol. 306 (2004), p.666

DOI: 10.1126/science.1102896

Google Scholar

[6] C. Lee C, X. Wei X, J. W. Kysar J W and J. Hone J : Science Vol. 321 (2008), p.385

Google Scholar

[7] Y. Zheng, N. Wei, Z. Fan, L. Xu and Z. Huang: Nanotechnology Vol. 22 (2011), p.405701

Google Scholar

[8] L. Xu, N. Wei, Y. Zheng, Z. Fan, H. Wang and J. Zheng: J. Mater. Chem. (2012)

DOI: 10.1039/C1JM13799A

Google Scholar

[9] R. H. Baughman, H. Eckhardt and M. Kertesz: J. Chem. Phys. Vol. 87 (1987), p.6687

Google Scholar

[10] N. Narita, S. Nagai, S. Suzuki and K. Nakao: Phys. Rev. B Vol. 58 (1998), pp.11-009

Google Scholar

[11] N. Narita, S. Nagai, S. Suzuki and K. Nakao: Phys. Rev. B Vol. 62 (2000), pp.11-146

Google Scholar

[12] V. R. Coluci, S. F. Braga, S. B. Legoas, D. S. Galvão and R. H. Baughman: Nanotechnology Vol. 15 (2004), p. S142

DOI: 10.1088/0957-4484/15/4/006

Google Scholar

[13] A. N. Enyashin, Y. N. Makurin and A. L. Ivanovskii: Carbon Vol. 42 (2004), p. (2081)

Google Scholar

[14] J. Zhou, K. Lv, Q. Wang, X. S. Chen, Q. Sun and P. Jena: J. Chem. Phys. Vol. 134 (2011), p.174701

Google Scholar

[15] H. C. Bai, Y. Zhu, W. Y. Qiao and Y. H. Huang: RSC Adv. Vol.1 (2011), p.768

Google Scholar

[16] M. M. Haley: Pure Appl. Chem. Vol. 80(3) (2008), p.519

Google Scholar

[17] G. X. Li, Y. L. Li, H. B. Liu, Y. B. Guo, Y. J. Li and D. B. Zhu: Chem. Commun. Vol. 46 (2010), p.3256

Google Scholar

[18] S. W. Cranford and M. J. Buehler: Carbon Vol.49 (2011), p.4111

Google Scholar

[19] S. Plimpton: J. Comput. Phys. Vol. 117 (1995), p.1

Google Scholar

[20] W. B. Donald, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni and S. B. Sinnott: J. Phys.: Cond. Matter Vol. 14 (2002), p.783

Google Scholar

[21] O. A. Shenderova, D. W. Brenner, A. Omeltchenko, X. Su and L. H. Yang: Phys. Rev. B Vol. 61 (2000), p.3877

Google Scholar

[22] W. G. Hoover: Phys. Rev. A Vol. 31 (1985), p.1695

Google Scholar

[23] Polak E ed: Optimization: Algorithms and Consistent Approximations (Springer, New York 1997).

Google Scholar

[24] Q. X. Pei, Y. W. Zhang and V. B. Shenoy: Carbon Vol. 48 (2010), p.898

Google Scholar