Modeling and Analysis of Manufacturing Variables in the Transesterification Process for Refined Biodiesel Fuels

Abstract:

Article Preview

In this study, the factorial design and response surface methodology (RSM) was used to find the influence of manufacturing variables on the transesterification of plant oil into fatty acid methyl ester (i.e. biodiesel fuel) and to observe the variation of the degree of effect for each variable in the transesterification process with refined procedure. A second-order model was obtained to predict the viscosity and the yield of biodiesel fuel as a function of the reaction time, the mass fraction of catalyst in methanol and the molar ratio of methanol to plant oil. The experimental data of the yield and the viscosity of refined biodiesel fuels in different manufacturing variables are discussed in this study. Analysis of variance (ANOVA) was also applied to discuss the main factor and interaction factor effects of the manufacturing variables on the responses of the yield of biodiesel fuels. As shown in this study, the amount of catalyst affects the viscosity and the yield of biodiesel fuels. The yield of methyl ester is proportional to the amounts of methanol in the reaction. The factor of reaction time affects the viscosity and the yield of the biodiesel fuel slightly.

Info:

Periodical:

Advanced Materials Research (Volumes 472-475)

Edited by:

Wenzhe Chen, Xipeng Xu, Pinqiang Dai, Yonglu Chen and Zhengyi Jiang

Pages:

2133-2136

DOI:

10.4028/www.scientific.net/AMR.472-475.2133

Citation:

T. W. Chung et al., "Modeling and Analysis of Manufacturing Variables in the Transesterification Process for Refined Biodiesel Fuels", Advanced Materials Research, Vols. 472-475, pp. 2133-2136, 2012

Online since:

February 2012

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.