Compact Reflection Bragg Grating Based on Metal-Insulator-Semiconductor Structure

Article Preview

Abstract:

An ultra-compact and broad-band Bragg grating based on hybrid plasmonic waveguide is presented and investigated. The Bragg grating is formed by a semiconductor trip which is separated from a metal surface by a nanoscale insulator layer. Simulation results demonstrate that the proposed structure shows the capability of efficient wavelength selection near the telecom bandwidths and transmits the light with a strong mode confinement and low propagation loss. It will have a potential application in the broad-band telecommunications systems and the integrated photonic circuits.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 472-475)

Pages:

2260-2263

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photonics 2, 496-500 (2008).

Google Scholar

[2] Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, and T. Zhou, Opt. Express 17, 21320-21325 (2009).

Google Scholar

[3] I. Avrutsky, R. Soref, and W. Buchwald, Opt. Express 18, 348-363 (2010).

Google Scholar

[4] Y. S. Bian, Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, Opt. Express 18, 23756-23762 (2010).

Google Scholar

[5] R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629-632 (2009).

DOI: 10.1038/nature08364

Google Scholar

[6] Y. S. Bian, Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, IEEE Photon. Technol. Lett., To be published.

Google Scholar

[7] A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, J. Lightwave Technol. 23, 413-422 (2005).

DOI: 10.1109/jlt.2004.835749

Google Scholar

[8] T. Sondergaard, S. I. Bozhevolnyi, and A. Boltasseva, Phys. Rev. B 73(4), 1–8 (2006).

Google Scholar

[9] S. I. Bozhevolnyi, V. S. Volkov, E. Devaus, and T. W. Ebbesen, Phys. Rev. Lett. 95, 046802 (2005).

Google Scholar

[10] J. Mu, and W. Huang, IEEE/OSA J, Lightw. Technol. 27(4), 436–439 (2009).

Google Scholar

[11] R. Zia, M. D. Selker, P. B. Catrysse, and M. Brongersma, J. Opt. Soc. Am. A 21, 2442-2446 (2004).

Google Scholar

[12] J. Park, H. Kim, and B. Lee, Opt. Express 16, 413-425 (2008).

Google Scholar

[13] J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, Phys. Rev. B 72, 075405 (2005).

Google Scholar

[14] J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, Phys. Rev. B 73, 035407 (2006).

Google Scholar

[15] I.M. Lee, J. Jung, J. Park, H. Kim, and B. Lee, Opt. Express 15, 16596-16603 (2007).

Google Scholar