Preparing Large Sized Billet of High Strength Aluminum Alloy with the Application of Low Frequency Electromagnetic Field

Article Preview

Abstract:

Grain refinement is quite important for producing 7050 alloy billet especially in large scale. Low frequency electromagnetic casting (LFEC) process was used to make 7050 aluminum alloy Φ500 mm billets and study the effect of electromagnetic field on the microstructure. The sound Φ500 mm billets of 7050 alloys without any grain refiner can be successfully prepared by the LFEC process. The results show that low frequency electromagnetic field has a significant grain refining effect on 7050 alloy and can effectively eliminate feather grain structure. The microstructures of LFEC ingot from the border to the center of the cross section are all equiaxed grains and are finer and more uniform than that of conventional direct chill (DC) cast billets. The LFEC process also shows a strong power to eliminate hot tearing during casting large sized billet of high strength aluminium alloy.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 472-475)

Pages:

723-726

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. S. Murty, S. A. Kori, M. Chakraborty, Inter. Mater. Rev. 47 (2002) 3-29.

Google Scholar

[2] R. Nadella, D. G. Eskin, L. Katgerman, Metall. Mater. Trans. A 39 (2008) 450-461.

Google Scholar

[3] D. G. Eskin, Physical metallurgy of direct chill casting of aluminum alloys, CRC Press, Boca Raton 2008.

DOI: 10.1201/9781420062823

Google Scholar

[4] Y. N. Kwon, Y. S. Lee, J. H. Lee, Grain size effect on hot forging of mg alloys, in: A. Nyberg, S. R. Agnew, N. R. Nelllamegham, M. O. Pekguleryuz (Eds.), Magnesium technology 2009, TMS, San Francisco, California, USA, 2009, pp.425-428.

Google Scholar

[5] P. S. Mohanty, J. E. Gruzleski, Acta Metallurgica Et Materialia 43 (1995) 2001-2012.

DOI: 10.1016/0956-7151(94)00405-7

Google Scholar

[6] G. I. Eskin, G. S. Makarov, Y. P. Pimenov, Adv. Perform. Mater. 2 (1995) 43-50.

Google Scholar

[7] X. Liu, Y. Osawa, S. Takamori, T. Mukai, Mater. Lett. 62 (2008) 2872-2875.

Google Scholar

[8] B. Zhang, J. Cui, G. Lu, Mater. Sci. Eng. A 355 (2003) 325-330.

Google Scholar

[9] J. Dong, Z. Zhao, J. Cui, F. Yu, C. Ban, Metall. Mater. Trans. A 35 (2004) 2487-2494.

Google Scholar

[10] K. Miwa, T. Tamura, M. Li, N. Omura, Y. Murakami, Materials Science Forum 690 (2011) 162-165.

Google Scholar

[11] Z. N. Getselev, J. Met. 10 (1971) 38-43.

Google Scholar

[12] Y. B. Zuo, M. Xia, S. Liang, Y. Wang, G. Scamans, Z. Fan, Mater. Sci. Technol. 27 (2011) 101-107.

Google Scholar

[13] Y. B. Zuo, B. Jiang, Z. Fan, Materials Science Forum 690 (2011) 137-140.

Google Scholar

[14] M. C. Flemings, Solidification Processing, McGraw-Hill, NY, USA, 1974.

Google Scholar

[15] M. C. Flemings, Metall. Trans. A 22 (1991) 957-981.

Google Scholar

[16] Y. B. Zuo, H. Nagaumi, J. Z. Cui, J. Mater. Process. Technol. 197 (2008) 109-115.

Google Scholar

[17] Y. Zuo, J. Cui, J. Dong, F. Yu, Mater. Sci. Eng. A 408 (2005) 176-181.

Google Scholar