In Situ Fabrication and Microstucture of ZrB2 Particles Reinforced Aluminum Matrix Composites

Article Preview

Abstract:

Abstract:Aluminum matrx composites reinforced by in situ ZrB2 particles are fabricated from A356-AlB-K2ZrF6 system via in-situ melt reaction method, and the morphologies, sizes and distributions of the in situ particles as well as the microstructures, mechanical mechanisms of the composites are investigated by XRD,SEM,TEM and tensile tests. The results indicate that the morphologies of the in situ particles are mainly with ball-shape, the sizes are in nanometer scale and the distributions in the matrix are uniform. The interfaces between the in situ particles and the aluminum matrix are net and no interfacial outgrowth is observed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 476-478)

Pages:

122-125

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Friedrich, S. Schumann, Journal of Materials Processing Technology 117 (3)(2001) 276–281.

Google Scholar

[2] A. Stalmann, W. Sebastian, H. Friedrich, S. Schumann, K. Dröder, Advanced Engineering Materials 3 (12) (2001) 969–974.

DOI: 10.1002/1527-2648(200112)3:12<969::aid-adem969>3.0.co;2-9

Google Scholar

[3] Y. Guangyin, S. Yangshan, D. Wenjiang, Scripta Materialia 43 (11) (2000) 1009–1013.

DOI: 10.1016/s1359-6462(00)00528-5

Google Scholar

[4] M. Yamaguchi, I. Yamamoto, F. Ishikawa, T. Goto, S. Miura, J. Alloys Compd. 253–254 (1997) 308–312.

Google Scholar

[5] B. Post, F.W. Glaser, D. Moskowitz, Acta Metall. 2 (1954) 20.

Google Scholar

[6] N. Clark, School of Physical Sciences, The Flinders University of South Australia,Adelaide, Australia, Private Communication, 1996.

Google Scholar

[7] Y. Tsunekawa, H. Suzuki, Y. Genma, Mater. Des. 22 (2001) 467–472.

Google Scholar

[8] H. Ferkel, B.L. Mordike, Mater. Sci. Eng., A Struct. Mater.: Prop.Microstruct. Process. 298 (2001) 193–199.

Google Scholar

[9] H.Y. Wang, Q.C. Jiang, Y.Wang, B.X. Ma, F. Zhao,Mater. Lett. 58 (2004) 3509–3513.

Google Scholar

[10] A.R. Vaidya, J.J. Lewandowski, Mater. Sci. Eng., A Struct. Mater.: Prop. Microstruct. Process. 220 (1996) 85–92.

Google Scholar

[11] C. Wen, Y. Yamada, K. Shimojima, M. Mabuchi, M. Nakamura, T. Asahina, T. Aizawa, K. Higashi, Materials Transactions JIM (Jpn Inst Met) 41 (9) (2000) 1192–1195.

DOI: 10.2320/matertrans1989.41.1192

Google Scholar

[12] Z. Zhang, D.L. Chen, Scripta Materialia 54 (7) (2006) 1321–1326.

Google Scholar

[13] A.Maltais, D. Dubé,M. Fiset, G. Laroche, S. Turgeon,Materials Characterization 52 (2) (2004) 103–119.

DOI: 10.1016/j.matchar.2004.04.002

Google Scholar

[14] H. Bayani, E. Saebnoori, Journal of Rare Earths 27 (2) (2009) 255–258.

Google Scholar

[15] K. Hirai, H. Somekawa, Y. Takigawa, K. Higashi,Materials Science and Engineering A 403 (2005) 276–280.

Google Scholar