In Situ Fabrication and Microstucture of ZrB2 Particles Reinforced Aluminum Matrix Composites

Abstract:

Article Preview

Abstract:Aluminum matrx composites reinforced by in situ ZrB2 particles are fabricated from A356-AlB-K2ZrF6 system via in-situ melt reaction method, and the morphologies, sizes and distributions of the in situ particles as well as the microstructures, mechanical mechanisms of the composites are investigated by XRD,SEM,TEM and tensile tests. The results indicate that the morphologies of the in situ particles are mainly with ball-shape, the sizes are in nanometer scale and the distributions in the matrix are uniform. The interfaces between the in situ particles and the aluminum matrix are net and no interfacial outgrowth is observed.

Info:

Periodical:

Advanced Materials Research (Volumes 476-478)

Edited by:

Wenzhe Chen, Qiang Li, Yonglu Chen, Pinqiang Dai and Zhengyi Jiang

Pages:

122-125

Citation:

Z. Rui et al., "In Situ Fabrication and Microstucture of ZrB2 Particles Reinforced Aluminum Matrix Composites", Advanced Materials Research, Vols. 476-478, pp. 122-125, 2012

Online since:

February 2012

Export:

Price:

$38.00

[1] H. Friedrich, S. Schumann, Journal of Materials Processing Technology 117 (3)(2001) 276–281.

[2] A. Stalmann, W. Sebastian, H. Friedrich, S. Schumann, K. Dröder, Advanced Engineering Materials 3 (12) (2001) 969–974.

[3] Y. Guangyin, S. Yangshan, D. Wenjiang, Scripta Materialia 43 (11) (2000) 1009–1013.

[4] M. Yamaguchi, I. Yamamoto, F. Ishikawa, T. Goto, S. Miura, J. Alloys Compd. 253–254 (1997) 308–312.

[5] B. Post, F.W. Glaser, D. Moskowitz, Acta Metall. 2 (1954) 20.

[6] N. Clark, School of Physical Sciences, The Flinders University of South Australia, Adelaide, Australia, Private Communication, (1996).

[7] Y. Tsunekawa, H. Suzuki, Y. Genma, Mater. Des. 22 (2001) 467–472.

[8] H. Ferkel, B.L. Mordike, Mater. Sci. Eng., A Struct. Mater.: Prop. Microstruct. Process. 298 (2001) 193–199.

[9] H.Y. Wang, Q.C. Jiang, Y. Wang, B.X. Ma, F. Zhao, Mater. Lett. 58 (2004) 3509–3513.

[10] A.R. Vaidya, J.J. Lewandowski, Mater. Sci. Eng., A Struct. Mater.: Prop. Microstruct. Process. 220 (1996) 85–92.

[11] C. Wen, Y. Yamada, K. Shimojima, M. Mabuchi, M. Nakamura, T. Asahina, T. Aizawa, K. Higashi, Materials Transactions JIM (Jpn Inst Met) 41 (9) (2000) 1192–1195.

DOI: https://doi.org/10.2320/matertrans1989.41.1192

[12] Z. Zhang, D.L. Chen, Scripta Materialia 54 (7) (2006) 1321–1326.

[13] A. Maltais, D. Dubé,M. Fiset, G. Laroche, S. Turgeon, Materials Characterization 52 (2) (2004) 103–119.

[14] H. Bayani, E. Saebnoori, Journal of Rare Earths 27 (2) (2009) 255–258.

[15] K. Hirai, H. Somekawa, Y. Takigawa, K. Higashi, Materials Science and Engineering A 403 (2005) 276–280.

Fetching data from Crossref.
This may take some time to load.