Effect of the Grain Size on Electrochemical Corrosion Behavior of Cu60Ni20Cr20 Alloys in Solutions Containing Chloride Ions

Article Preview

Abstract:

The two Cu60Ni20Cr20 alloys with the different grain size were prepared by conventional casting (CA) and mechanical alloying (MA) through hot pressing. Effect of the grain size on electrochemical corrosion behavior of the two Cu60Ni20Cr20 alloys was also studied in solutions containing chloride ions. Results show that the free corrosion potentials of the two alloys move toward to negative values, corrosion current densities increase and therefore corrosion rates become faster with the increment of chloride ion concentrations. CACu60Ni20Cr20 alloy and MACu60Ni20Cr20 alloy have passive phenomena in 0.05mol/L Na2SO4 neutral solution, but passive phenomena become weak or disappear when the chloride ions are added. Corrosion rates of the nanocrystalline MACu60Ni20Cr20 alloy become slower than those of the coarse grained CACu60Ni20Cr20 alloy in solutions containing the same chloride ion concentrations because MACu60Ni20Cr20 alloy is able to produce large concentrations of grain boundaries and passive elements is able to diffuse quickly to form the protective film.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 476-478)

Pages:

16-20

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Lu: Mater. Sci. Eng. Vol. 16 (1996), p.161

Google Scholar

[2] K. Lu: J. Mater. Sci. Technol. Vol. 15 (1999), p.193

Google Scholar

[3] S. C. Tjong and H. Chen: Mater. Sci. Eng R. Vol. 45 (2004), p.1

Google Scholar

[4] S. J. Thorpe, B. Ramaswamni and E. T. Aust: J. Electrochem. Soc. Vol. 135 (1988), p.2162

Google Scholar

[5] X. Y. Wang and D. Y. Li: Electrochim. Acta. Vol. 47 (2002), p.3939

Google Scholar

[5] Y. Li, F. H. Wang and G. Liu: Corros. Vol. 60 (2004), p.891

Google Scholar

[7] A. Barbucci A, G. Farne, P. Matteazzi, R. Riccieri and G. Cerisola: Corros. Sci. Vol. 41 (1999), p.463

Google Scholar

[8] Z. Q. Cao, W. H. Liu and Z. G. Zheng: The Chinese Journal of Nonferrous Metals. Vol. 16(2006), p.170 (in Chinease)

Google Scholar

[9] B. Zhang, Y. Li and F. H. Wang: Corros. Sci. Vol. 49 (2007), p. (2071)

Google Scholar

[10] W. Luo, C. Qian, X. J. Wu and M. Yan: Mater. Sci. Eng A. Vol. 452-453 (2007), p.524

Google Scholar

[11] F. Mansfeld, G. Liu and H. Xiao: Corros. Sci. Vol. 36 (1994), p. (2063)

Google Scholar

[12] R.H. Yu, J. Zhu, X.X. Zhang and M. Knobel: Mater. Sci. Technol. Vol. 12 (1996), p.464

Google Scholar

[13] J.R. Groza and J.C. Gibeling: Mater. Sci. Eng. Vol. A 171 (1993), p.115

Google Scholar

[14] M.M. Dadras and D.G. Morris: Scripta Mat. Vol. 38 (1998), p.199

Google Scholar

[15] J. S. Benjamin: Metall. Trans. Vol. 1 (1970), p.2943

Google Scholar

[16] J. S. Benjamin and T. E. Volin: Metall. Trans. Vol. 5 (1974), p. (1929)

Google Scholar

[17] B. R. Murphy and T. H. Courtney: Nanostructured Materials. Vol. 4 (1994), p.365

Google Scholar

[18] S. Abe, S. Saji and S. Hori: J. Japan. Inst. Metals. Vol. 54 (1990), p.895

Google Scholar

[19] E. M. Zdujic, K. F. Kobayashi and P. H. Shingu: Zeitschrift fuer Metallkunde. Vol. 81 (1990), p.380

Google Scholar

[20] J. Xu, U. H. Klassen and R. S. Averback: J. Appl. Phys. Vol. 79 (1996), p.3935

Google Scholar

[21] H. Araki, Shigeoki, T. Okabe, Y. Minamino, T. Yamane, Y. Miyamoto: Materials. Trans J IM. Vol. 36 (1995), p.465

Google Scholar

[22] H. Hahn, J. Logas and R. S. Averback: J. Mater. Res. Vol. 5 (1990), p.609

Google Scholar

[23] C. L. Wang, S. Z. Lin, Y. Niu, W. T. Wu, Z. L. Zhao: J. Appl. Phys. Vol. A76 (2003), p.157

Google Scholar