Dissolution of Cellulose and Synthesis of Cellulose-Graft-Poly (L-Lactide) via Ring-Opening Polymerization in an Ionic Liquid

Article Preview

Abstract:

Dissolution and homogeneous graft copolymerization of cellulose were performed in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl) with L-lactide. The best synthetic condition of the cellulose-graft-poly (L-) (cellulose-g-PLLA) was that cellulose 0.6g, L-lactide 5.34g and 4-dimethylaminopyri lactide dine (DMAP) as an organic catalyst 0.69g reacted for 12 hours at 80°C. The synthesized AmimCl and cellulose graft copolymers were characterized by FT-IR, 1H-NMR, GPC, TG and WAXD. The results indicated that AmimCl dissolved cellulose directly by destroying intermolecular and intramolecular hydrogen bonds in cellulose and the grafting rate of the polymer reached 4.44, which was higher than that reported in AmimCl with Sn(oct)2 as a catalyst.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 476-478)

Pages:

1897-1900

Citation:

Online since:

February 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.X. Jiang, L.W. Zhu, K. Wang and W.G. Wang: Forest Stud. China Vol. 8(3) (2006), p.30–33

Google Scholar

[2] M. Niu, G.J. Zhao and M.H. Alma: Forest Stud. China Vol. 13(1) (2011), p.71–79

Google Scholar

[3] U. Riedel and J. Nickel: Angew. Makromol. Chem. Vol. 272 (1999), pp.34-40

Google Scholar

[4] A.K. Bledzki and J. Gassan: Prog. Polym. Sci. Vol. 24(2) (1999), pp.221-274

Google Scholar

[5] J.A. Trejo-O'reilly, J.Y. Cavaille, M. Paillet, A. Gandini, P. Herrera-Franco and J. Cauich: Polym. Composite Vol. 21 (2000), pp.65-71

Google Scholar

[6] Y.Q. Deng: Chin. Univ. Technol. Transf. Vol. 11 (2003), p.33−35(in Chinese)

Google Scholar

[7] F. Ganske and U.T. Bornscheuer: Organic Lett. Vol. 7(14) (2005), p.3097−3098

Google Scholar

[8] M. Mori, R.C. Garcia and M.P. Belleville: Catalysis Today Vol. 104 (2−4) (2005), p.313−317

Google Scholar

[9] A.K. Mohanty, M. Misra and G. Hinrichsen: Macromol. Mater. Eng. Vol. 276/277 (2000), pp.1-24

Google Scholar

[10] D. Garlotta: J. Polym. EnViron. Vol. 9(2) (2002), pp.63-84

Google Scholar

[11] K. Van de Velde and P. KieKens: Polym. Test Vol. 21(4) (2002), pp.433-442

Google Scholar

[12] H.R. Kricheldorf: Chemosphere Vol. 43 (1) (2001), pp.49-54

Google Scholar

[13] T. Endo, Y. Shibasaki and F. Sanda: J. Polym. Sci. Pol. Chem. Vol. 40(13) (2002), pp.2190-2198

Google Scholar

[14] C. Allen, D. Maysinger and A. Eisenberg: Colloid. Surface B Vol. 16(1-4) (1999), pp.3-27

Google Scholar

[15] M.C. Jones and J.C. Leroux: Eur. J. Pharm. Biopharm. Vol. 48 (1999), pp.101-111

Google Scholar

[16] K. Kataoka, A. Harada and Y. Nagasaki: Adv. Drug Deliver. Rev. Vol. 47(1) (2001), pp.113-131

Google Scholar

[17] G.S. Kwon: Crit. Rev. Ther. Drug Vol. 20 (2003), pp.357-403

Google Scholar

[18] G.S. Kwon and K. Kaoka: Adv. Drug Deliver. Rev. Vol. 16 (1995), pp.295-309

Google Scholar

[19] A.V. Kabanov and V.Y. Alakhov: Crit. Rev. Ther. Drug Vol. 19 (2002), pp.1-72

Google Scholar

[20] S. Hornig and T. Heinze: Biomacromolecules Vol. 9(5) (2008), pp.1487-1492

Google Scholar

[21] J.L. Anderson, J. Ding and T. Welton: Am. Chem. Soc. 124 (2002), p.14253 −14254

Google Scholar

[22] L.N. Zhang, D. Ruan and J.P. Zhou: Ind. Eng. Chem. Res. Vol. 40(25) (2001), p.5923−5928

Google Scholar