Efficient Destruction of Chlorophenols by Ultraviolet Irradiation

Article Preview

Abstract:

Chlorophenols (CPs), a group of recalcitrant and toxic pollutants, are widespread in the environment and threating human health. The environment-friendly technology, UV irradiation, could efficiently destruct CPs. The study investigated the influence of solution pH and positions and number of substituted chlorine atoms on photodegradation process of CPs, and also studied the photodegradation pathway. It found that the photodegradaton process of CPs was highly dependent on solution pH, and higher pH favored the degradation. The photodegradation processes agreed well with the pseudo-first order kinetics, and para- and ortho- positions and lower chlorination degree were more favorable for photodegradation of CPs. Most of the chlorine atoms were released as chloride ions, and suggest that the cleavage of the C-Cl bond occurred during the photodegradation process. It will provide some guidance for efficient treatment of CPs in water.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 476-478)

Pages:

1955-1959

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. P. Schwarzenbach, T. Egli, T. B. Hofstetter, U. von Gunten, B. Wehrli: Annu. Rev. Environ. Resour. Vol. 35 (2010), p.109

DOI: 10.1146/annurev-environ-100809-125342

Google Scholar

[2] A. O. Olaniran, E. O. Igbinosa: Chemosphere Vol. 83 (2011), p.1297

Google Scholar

[3] ATSDR, Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Priority List of Hazardous Substances (2007)

Google Scholar

[4] S. D. Copley: Nat. Chem. Biol. Vol. 5 (2009), p.560

Google Scholar

[5] S. Esplugas, M. Pera-Titus, V. Garcia-Molina, M. A. Banos, J. Gimenez: Appl Catal B-Environ Vol. 47 (2004), p.219

Google Scholar

[6] U. Vongunten, J. Holgne: Environ. Sci. Technol. Vol. 28 (1994), p.1234

Google Scholar

[7] F. Qin, Y. Y. Zhao, Y. l. Zhao, J. M. Boyd, W.J. Zhou: Angew. Chem. Int. Ed. Vol. 49 (2010), p.790

Google Scholar

[8] Q. Lan, F. Li, C. Liu, X.-Z. Li: Environ. Sci. Technol. Vol. 42 (2008), p.7918

Google Scholar

[9] F. Xu, H. Wang, Q.Z. Zhang, R.X. Zhang, X.H. Qu, W.X. Wang: Environ. Sci. Technol. Vol. 44 (2010), p.1399

Google Scholar

[10] S. S. Gupta et al.: Science Vol. 296 (2002), p.326

Google Scholar

[11] B. I. Escher, K. Fenner: Environ. Sci. Technol. Vol. 45 (2011), p.3835

Google Scholar

[12] W. A. M. Hijnen, E. F. Beerendonk, G. J. Medema: Water Res.Vol. 40 (2006), p.3

Google Scholar

[13] M. A. Shannon et al.: Nature Vol. 452 (2008), p.301

Google Scholar

[14] S. Canonica, L. Meunier, U. Von Gunten: Water Res. Vol. 42 (2008), p.121

Google Scholar

[15] J. C. Crittenden, S. M. Hu, D. W. Hand, S. A. Green: Water Res. Vol. 33 (1999), p.2315

Google Scholar

[16] R. O. Rahn: Photochem. Photobiol. Vol. 66 (1997), p.450

Google Scholar

[17] N. V. Klassen, D. Marchington, H. C. E. McGowan: Anal. Chem. Vol. 66 (1994), p.2921

Google Scholar

[18] M. Czaplicka: J. Hazard. Mater. Vol. 134 (2006), p.45

Google Scholar