Investigation on Properties of Electroless Ni-P-W/Al2O3 Composite Coatings Deposited on Sintered NdFeB Permanent Magnet

Article Preview

Abstract:

The Ni-P-W/Al2O3 composite coatings were deposited on the surface of sintered NdFeB permanent magnet by electroless plating method. The morphology and the phases of Ni-P-W/Al2O3 composite coatings were investigated using scanning electron microscopy and X-ray diffraction respectively. The hardness and the corrosion resistance of the composite coatings were also tested. The results indicated that the composite coatings morphology appears closely nodules morphology, and the microhardness increases linearly with increasing incorporation of Al2O3 ratio. Compared with NdFeB magnet and Ni-P-W amorphous alloy coating, the corrosion resistance of the composite coatings was superior to that of the NdFeB magnet and the amorphous alloy coating obviously. However, for the corrosion resistance of Ni-P-W/Al2O3 composite coatings with different Al2O3 concentration, there is not a linear increase with the Al2O3 concentration increasing. The self-corrosion potential of Ni-P-W/Al2O3 composite coatings reaches the highest value while increasing incorporation of Al2O3 ratio up to 10 g/L.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 476-478)

Pages:

397-401

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Matsuura: J. Magn. Magn. Mater. vol. 303, p.344–347, 2006.

Google Scholar

[2] G. Bai, R.W. Gao, Y. Sun, G.B. Han and B. Wang: J. Magn. Magn. Mater. vol. 308, p.20–23, 2007.

Google Scholar

[3] L. Z. Song, Z. Y. Yang: J. Iron Steel Res. vol. 16, p.89–94, 2009.

Google Scholar

[4] A. A. El-Moneim, A. Gebert, M. Uhlemann, O. Gutfleisch, L. Schultz: Corros. Sci. vol. 44, p.1857–1874, 2002.

Google Scholar

[5] R. Yapp, H. A. Davies, F. Leccabue, B. E. Watts: J. Mater. Sci. Lett. vol. 38, p.33–38, 1999.

Google Scholar

[6] M. D. Gera, Y. Sung, J. L. Ou: Mater. Chem. Phys. vol. 89, p.383–389, 2005.

Google Scholar

[7] Z. X. Ping, J. T. Yuan, Y. D. He and X. G. Li: Acta Metall. Sin. vol. 22, p.225–232, 2009.

Google Scholar

[8] A. S. Hamdy, M. A. Shoeib, H. Hady, O. F. A. Salam: J. Appl. Electrochem. vol. 38 p.385–394, 2008.

Google Scholar

[9] R. Stevanovic, J. Stevanovic: J. Appl. Electrochem. vol. 31, p.855–862, 2002.

Google Scholar

[10] Y. Gao, Z. J. Zheng, M. Zhu, C. P. Luo: Mater. Sci. Engi. vol. A381, p.98–103, 2004.

Google Scholar

[11] S. M. Tamborim-Takeuchi, D. S. Azambuja: A. M. Saliba-Silva, Surf. Coat. Technol. vol. 200, pp.6826-6831, 2006.

Google Scholar

[12] J. N. Balaraju, K. S. Rajam: Surf. Coat. Technol. vol. 195, p.154–161, 2005.

Google Scholar

[13] G. Gutzeit, E. T. Mapp: Anti-Corros. Method. Mater. vol. 3, p.331–336, 1956.

Google Scholar

[14] E. P. Rajiv, S. K. Seshadri: Plat. Surf. Finish. vol. 79, p.85–88, 1992.

Google Scholar

[15] N. Periene, A. Cesuniene, L. Taicas: Plat. Surf. Finish. vol. 81, p.68–71, 1994.

Google Scholar