Fabrication of Al-Based Matrix Composite Reinforced with WAl12 Intermetallic Particles by Press-Forming Process Using High-Energy Ball-Milled Powders

Article Preview

Abstract:

The 22wt%WAl12 intermetallic particulate reinforced Al-based matrix composite was successfully fabricated by press-forming technology using high-energy ball-milled powders. X-ray diffraction analysis shows that WAl12 reinforcement phase has been obtained after in situ reaction of Al matrix with W14Al86 alloy at 620°C. The mechanical properties of the composite material were studied at room temperature. The Young’s modulus, microhardness and the maximum ultimate tensile strength of this composite material can reach 75GPa, 1.51GPa and 471MPa, respectively. The results show that there is a good interfacial bonding between the Al matrix and WAl12 particles. However, the composite cannot be applied in high temperature environment because of its fairly low strength residual ratio.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 476-478)

Pages:

574-578

Citation:

Online since:

February 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.R. Gibson, A.J. Clegg, A.A. Das: Mater Sci Technol Vol.1(1985), p.558

Google Scholar

[2] M.A. Dellis, J.P. Keastenrmans, F.Delannay: Mater Sci Eng A Vol.135(1991),p.253

Google Scholar

[3] J.A. Hooker, P.J. Doorbar: Mater Sci Technol Vol.16(2000),p.725

Google Scholar

[4] T. Ozben, E. Kilickap, O. Çakir: J Mater Process Technol Vol.198(2008),p.220

Google Scholar

[5] M.A. Muñoz-Morris, J.I. Rexach, M.Lieblich: Intermetallics Vol.13(2005),p.141

Google Scholar

[6] H.A. Pour, M.Lieblich, A.J. López, J.Rams, M.T. Salehi, S.G. Shabestari: Compsites:Part A Vol.38(2007),p.2536

Google Scholar

[7] C.E.D.A. Costa, F.Velasco, J.M. Torralba: Metall Mater Trans A Vol.33(2002),p.3541

Google Scholar

[8] T.D. Shen, K.Y. Wang, J.T. Wang, M.X. Quan: Mater Sci Eng A Vol.151(1992),p.189

Google Scholar

[9] H.X. Peng, D.Z. Wang, L.Geng, C.K. Yao, J.F. Mao: Scripta Mater Vol.37(1997),p.199

Google Scholar

[10] I.H. Hong, D.K. Kim, Y.D. Hahn, H.D. Kim: Met Mater Int Vol.10(2004),p.301

Google Scholar

[11] L.Lu, M.O. Lai, Y.Su, H.L. Teo, C.F. Feng: Scripta Mater Vol.45(2001),p.1017

Google Scholar

[12] P. Sahoo, M.J. Koczak: Mater Sci Eng A Vol.144(1991),p.37

Google Scholar

[13] M.Emamy, M.Mahta, J.Rasizadeh: Compos Sci Technol Vol.66(2006),p.1063

Google Scholar

[14] C.Suryanarayana: Prog Mater Sci Vol.46(2001),p.1

Google Scholar

[15] J.S. Benjamin: Metall Trans Vol.1(1970),p.2943

Google Scholar

[16] J.S. Benjamin: Sci Am Vol.234(1976),p.40

Google Scholar

[17] P.S. Gilman, J.S. Benjamin: Mech.-alloy, Ann Rev Mater Sci Vol.13(1989),p.279

Google Scholar

[18] A.Bhaduri, V.Gopinathan, P.Ramakrishnan, A.P. Miodownik: Metall Mater Trans A Vol.27(1996),p.3718

Google Scholar

[19] S.H. Hong, K.H. Chung: Mater Sci Eng A Vol.194(1995),p.165

Google Scholar

[20] K.D. Woo, D.L. Zhang: Curr Appl Phys Vol.4(2004),p.378

Google Scholar

[21] H.G. Tang, X.F.Ma, W.Zhao S.G. Cai, B.Zhao Z.H. Qiao: J Alloys Compd Vol.437(2007),p.285

Google Scholar

[22] H.G. Tang, X.F.Ma, W.Zhao, X.W. Yan, R.J. Hong: J Alloys Compd Vol.347(2002),p.228

Google Scholar

[23] Hongzhan Yi, Naiheng MA, Xianfeng Li, Yijie Zhang, Haowei Wang: Mater. Sci. Eng.A Vol.419(2006) ,p.12

Google Scholar

[24] B.L. Shen, W.Li, H.Q.Ye: Acta Mater. Compos. Sin. Vol.3(1995) ,p.12

Google Scholar

[25] J.Wu, W.F.Li, J.L. Meng: J.South China Univ. Technol. Nat. Sci. Ed. Vol.31(2003) ,p.62

Google Scholar