Low Loss Hybrid Dielectric-Metal-Dielectric Waveguides for Sub-Micron Mode Confinement and Efficient Directional Coupling

Article Preview

Abstract:

In this paper, we present the design of a novel hybrid dielectric-metal-dielectric waveguide, which consists of a metal stripe sandwiched between low-high dielectric layers. Its modal characteristics are investigated using the finite element method at the telecom wavelength. Simulations show that the dielectric contrast near the metal stripe results in a strongly confined hybrid plasmonic mode with sub-micron mode size and low propagation loss. The effects of geometrical parameters are analyzed systematically and the properties of directional couplers based on such hybrid waveguide are also investigated. The proposed structure could be useful candidates for various integrated optical devices and enable many applications such as electro-optic modulation, switching, sensing and more.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 476-478)

Pages:

839-842

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824-830 (2003).

Google Scholar

[2] J. J. Ju, S. Park, M. S. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M. H. Lee, J. Lightwave Technol. 26, 1510-1518 (2008).

Google Scholar

[3] A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, J. Lightwave Technol. 23, 413-422 (2005).

DOI: 10.1109/jlt.2004.835749

Google Scholar

[4] R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photonics 2, 496-500 (2008).

Google Scholar

[5] D. X. Dai, and S. L. He, Opt. Express 17, 16646-16653 (2009).

Google Scholar

[6] Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, and T. Zhou, Opt. Express 17, 21320-21325 (2009).

Google Scholar

[7] I. Avrutsky, R. Soref, and W. Buchwald, Opt. Express 18, 348-363 (2010).

Google Scholar

[8] Y. S. Bian, Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, Opt. Express 18, 23756-23762 (2010).

Google Scholar

[9] Y. S. Zhao, and L. Zhu, J. Opt. Soc. Am. B 27, 1260-1265 (2010).

Google Scholar

[10] R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629-632 (2009).

DOI: 10.1038/nature08364

Google Scholar

[11] Y. S. Bian, Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, IEEE Photon. Technol. Lett., 23,884-886(2011).

Google Scholar

[12] H. S. Chu, E. P. Li, P. Bai, and R. Hegde, Appl. Phys. Lett. 96, 221103 (2010).

Google Scholar

[13] X. Y. Zhang, A. Hu, J. Z. Wen, T. Zhang, X. J. Xue, Y. Zhou, and W. W. Duley, Opt. Express 18, 18945-18959 (2010).

Google Scholar

[14] M. Wu, Z. H. Han, and V. Van, Opt. Express 18, 11728-11736 (2010).

Google Scholar

[15] Y. S. Bian, Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, Opt. Express 19, 22417-22422 (2011).

Google Scholar

[16] E.D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

Google Scholar

[17] R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, New J. Phys. 10, 105018 (2008).

Google Scholar

[18] R. Buckley, and P. Berini, Opt. Express 15, 12174-12182 (2007).

Google Scholar

[19] J. P. Guo, and R. Adato, Opt. Express 16, 1232-1237 (2008).

Google Scholar