Investigation on Physical Properties of Ti-Based Quasicrystalline

Article Preview

Abstract:

The Ti1.4V0.6Ni ribbon alloy containing icosahedral quasicrystal is prepared by melt-spinning technique, and the Ti40.33Zr40.33Ni18.34 icosahedral quasicrystal powders are prepared by mechanical alloying. Both samples are annealing in a vacuum furnace. DSC trace obtained during continuous heating to 1300°C show a distinctly broad exothermic peak between 100°C and 1000°C for the Ti1.4V0.6Ni alloy, two sharp exothermic peaks between 100°C and 700°C for the Ti40.33Zr40.33Ni18.34, respectively. The magnetic behavior results demonstrated the Ti1.4V0.6Ni ribbon alloy exhibited higher ferromagnetic properties than those of Ti40.33Zr40.33Ni18.34 powders both at 15 K and 300 K. The specific heat capacity of two the sample increase when the temperature increase from 400 to 650°C.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 479-481)

Pages:

471-475

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.F. Cheng, M.J. Hui and F.H. Li: Philos. Mag. Lett. Vol. 63 (1991), p.49.

Google Scholar

[2] W.J. Kim, P.C. Gibbons and K.F. Kelton: Philos. Mag. A. Vol. 78 (1998), p.1111.

Google Scholar

[3] T. Matsuda, U. Mizutani, K. Hashimoto, Y. Itoh and K. Hiraga: Mater. Trans. JIM. Vol. 34 (1993), p.34.

Google Scholar

[4] C.F. Li, J. Saida, M. Matsushita and A. Inoue: Philos. Mag. Lett. Vol. 80 (2000), p.621.

Google Scholar

[5] J. Saida, M. Matsushita and A. Inoue: J. Appl. Phys. Vol. 90 (2001), p.4717.

Google Scholar

[6] Z. Zhang, H.Q. Ye and K.H. Kuo: Philos. Mag. A. Vol. 52 (1985), p.49.

Google Scholar

[7] K.F. Kelton, W.J. Kim and R.M. Stround: Appl. Phys. Lett. Vol. 70 (1997), p.3230.

Google Scholar

[8] W.Q. Liu, X.L. Wang and L.M. Wang: Int. J. Hydrogen. Energy. Vol. 36 (2011), p.616.

Google Scholar

[9] R.M. Stroud, A.M. Viano, P.C. Gibbons and K.F. Kelton: Appl. Phys. Lett. Vol. 69 (1996), p.2998.

Google Scholar

[10] J.B. Qiang, Y.M. Wang, D.H. Wang, M. Kramer and C. Dong: Philos. Mag. Lett. Vol. 83 (2003), p.467.

Google Scholar

[11] S.Yi, D.H. Kim: J. Mater. Res. Vol. 15 (2000), p.892.

Google Scholar

[12] S.Yi, K.B. Kim, E. Fleury, W.T. Kim and D.H. Kim: Mater. Lett. Vol. 52 (2002), p.75.

Google Scholar

[13] R.G. Hennig, K.F. Kelton, A.E. Carlsson, and C.L. Henley: Phys. Rev. B. Vol. 67 (2003), p.134202.

Google Scholar

[14] V. Azhazha, G. Khadzhay, S. Malikhin, B. Merisov and A. Pugachov: Phys. Lett. A. Vol. 319 (2003). P. 539.

DOI: 10.1016/j.physleta.2003.10.065

Google Scholar

[15] A. Inaba, A.P. Tsai and K. Shibata: 43 World Scientific, Singapore 1997.

Google Scholar

[16] K. Edagawa, K. Kajiyama: Mater. Sci. Eng. A. Vol. 646 (2000), p.294.

Google Scholar