Study on Glass Transition Temperature of Amorphous Polymer Thin Film

Article Preview

Abstract:

The glass transition temperaure Tg of amorphous polymer thin film was investigated. The opposite experimental results, the increase or decrease in Tg of thin film with decreasing film thickness, were found. It was believed that the free surface near the polymer-air interface has a smaller chain ends density, leading to the decrease in Tg; while the polymer-substrate interface has a larger chain ends density, resulting in the increase in Tg. However, there are a competition between the both, and the interaction of polymer and substrate is a dominant factor to affect Tg of thin film. In addition, the multilayer model of thin film was proposed to explain the effect of the free surface and the interface on the Tg of thin film.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 482-484)

Pages:

1457-1460

Citation:

Online since:

February 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.W. Frank, V.Rao, M.M. Despotopoulou et al.: Science Vol. 273(1996), pp.912-915.

Google Scholar

[2] K.F. Mansfield, D.N. Theodorou: Macromolecules Vol. 24(1991), pp.4295-4309.

Google Scholar

[3] J.Baschnagel, K.Binder: Macromolecules Vol. 28(1995), pp.6808-6818.

Google Scholar

[4] J.L. Keddie, R.A.L. Jones, R.A. Cory: Europhys Lett Vol. 27(1994), pp.59-64.

Google Scholar

[5] W.E. Wallace, J.H. Van Zanten, W.Wu: Phys Rev E Vol. 53(1996), pp.2053-2056.

Google Scholar

[6] J.A. Forrest, K.Dalnoki-Veress, J.R. Dutcher: Phys Rev E Vol. 56(1997), pp.5705-5716.

Google Scholar

[7] G.Kleideiter, O.Prucker, H.Bock et al.: Macromol Symp Vol. 145(1999), pp.95-102.

Google Scholar

[8] P.G.De Gennes: European Physical Journal E Vol. 2(2000), pp.201-205.

Google Scholar

[9] K.Fukao, Y.Miyamoto: Phys Rev E Vol. 64(2001), p.011803.

Google Scholar

[10] Z.Fakhraai, J.A. Forrest: Phys Rev Lett Vol. 95(2005), p.025701.

Google Scholar

[11] J.A. Forrest, K.Dalnoki-Veress, J.R. Stevens, et al.: Phys Rev Lett Vol. 77(1996), pp.2002-2005.

Google Scholar

[12] K.Dalnoki-Veress, J.A. Forrest, C.Murray, et al.: Phys Rev E Vol. 63(2001), p.031801.

Google Scholar

[13] J.H.vanZanten, W.E. Wallace, W.L.Wu: Phys Rev E Vol. 53(1996), p. R2053-R2056.

Google Scholar

[14] J.L. Keddie, R.A.L. Jones: Faraday Discussions Vol. 98(1994), pp.219-230.

Google Scholar

[15] Y.Grohens, M.Brogly, C.Labbe, M.O. David, J.Schultz: Langmuir Vol. 14(1998), pp.2929-2932.

DOI: 10.1021/la971397w

Google Scholar

[16] A.M. Mayes: Macromolecules Vol. 27(1994), pp.3114-3115.

Google Scholar

[17] K.F. Mansfield, D.N. Theodorou: Macromolecules Vol. 24(1991), pp.6283-6294.

Google Scholar

[18] W.Zhao, X.Zhao, M.H. Rafailovich, et al.: Macromolecules Vol. 26(1993), pp.561-562.

Google Scholar

[19] H.Schonherr, C.W. Frank: Macromolecules Vol. 36(2003), pp.1199-1208.

Google Scholar

[20] Y.Wang, C.M. Chan, K.M.Ng, L.Li: Macromolecules Vol. 41(2008), pp.2548-2553.

Google Scholar

[21] G.B.DeMaggio, W.E. Frieze, D.W. Gidley, et al.: Phys Rev Lett Vol. 78(1997), pp.1524-1527.

Google Scholar

[22] J.H. Kim, J.Jang, W.C. Zin: Langmuir Vol. 16(2000), pp.4064-4067.

Google Scholar

[23] J.H. Kim, J.Jang, W.C. Zin: Langmuir Vol. 17(2001), pp.2703-2710.

Google Scholar