Research on Properties of AlN-Mo Composite Ceramic

Article Preview

Abstract:

With CaF2 and CaCO3 as sintering additives, AlN-Mo composite was prepared using hot pressed sintering technique. The phase composition and morphology of AlN-Mo composite ceramics were analyzed using XRD and SEM, respectively. The experimental results show that when CaF2 and CaCO3 additives is in a range of 1~3wt%, the thermal conductivity AlN-Mo composites increases with increasing of the CaF2 content; With the increasing of CaCO3 content, first increases and then decreases. Sintering additives in a certain type and content, the thermal conductivity of AlN-Mo composite ceramics with 20 vol% Mo is higher than containing 18 vol% Mo. The dielectrical property of AlN-Mo composite ceramics was also discussed. The addition of CaF2 can decrease the dielectric constant of AlN-Mo composite ceramics.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 482-484)

Pages:

1695-1698

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.Q. Gao. the spark plugs and special ceramics. (China, 1998), p.19.

Google Scholar

[2] Y.P. Lu: Vacuum electrons.(China, 2004), p.49.

Google Scholar

[3] L.Q. Gao. Vacuum electrons.2003(2);p.49.

Google Scholar

[4] K. A. Khor, L. G. Yu, Y. Murakoshi. Spark plasma sintering of Sm2O3-doped aluminum nitride. Journal of the European Ceramic Society, 2005, 25(7):pp.1057-1065.

DOI: 10.1016/j.jeurceramsoc.2003.12.020

Google Scholar

[5] B. Mikijelj, D.K. Abe, R. Hutcheon. AlN-based lossy ceramics for high average power microwave devices: performance-property correlation. J Euro Ceram Soc, 2001, 25(7):2705-2709.

DOI: 10.1016/s0955-2219(03)00146-8

Google Scholar

[6] B. Mikijelj, D.K. Abe, AlN-based lossy ceramics for high power applications. In IVEC 2002 proceedings, Monterey, CA, 20-23 April. 2002:32-33.

Google Scholar

[7] Virkar AV, Jackson TB, Cutler RA. Thermodynamic and kinetic effects of oxygen removal on the thermal conductivity of aluminum nitride. J. Am. Ceram. Soc. 72(11), 1989, 2031-2042.

DOI: 10.1111/j.1151-2916.1989.tb06027.x

Google Scholar

[8] H.P. Zhou, W.G. Miu, Y. Win. Journal of the Chinese Ceramic Society, 1996, 24(2),p.146.

Google Scholar

[9] Mccauley JW, Corbin ND. Phase-relations and reaction sintering of transparent cubic aluminum oxynitride spinel(ALON). J. Am. Ceram. Soc. 62(9-10), 1979, 476-479.

DOI: 10.1111/j.1151-2916.1979.tb19109.x

Google Scholar

[10] Kurokawa Y, Utsumi K, Takamizawa H. Development and microstructural characterization of high-thermal conductivity aluminum nitride ceramics. J. Am. Ceram. Soc.1988; 71(7): 588-594.

DOI: 10.1111/j.1151-2916.1988.tb05924.x

Google Scholar

[11] Hundere A M and EinarsrudM A 1 J Europ Ceram Soc, 1996, 16: 899-9061.

Google Scholar

[12] H. Yu, Z.M. Yang. rare materials,2010,3(34), p.378.

Google Scholar

[13] Amir Azam Khan, Jean Claub Labbe. Aluminium nitride-molybdenum ceramic matrix composites possessing high thermal shock resistance. Materials Science and Engineering A. 1997, 1-2(230):33-38.

DOI: 10.1016/s0921-5093(97)00012-9

Google Scholar

[14] Amir Azam Khan, Jean Claub Labbe. Aluminium nitride-molybdenum ceramic matrix composites, Influence of molybdenum addition on electrical,, mechabical and thermal properties. Journal of the European Ceramic Society, 1997, 15-16(17):1885-1890.

DOI: 10.1016/s0955-2219(97)00071-x

Google Scholar