The Structural Characteristics and Function Analysis of the Mobile Genomic Islands Flanked by Isocitrate Dehydrogenase Genes in Escherichia coli and Salmonella enterica

Article Preview

Abstract:

Eleven genomic islands (GIs) flanked by isocitrate dehydrogenase genes are determined in Escherichia coli and Salmonella enterica. These GIs have at least one mobile gene, such as integrase gene, transposase gene or recombinase gene. Through annotation of internal genes, these GIs are related to lambda prophage. The excisionase gene is associated with the mobile gene in some GIs. An ABC transporter, namely, sitABCD operon, is existed in some GIs and may uptake Fe2+ and Mn2+. Mn2+ is a second cofactor and an essential activator of the isocitrate dehydrogenase. The cleavage site of functional lambda integrase is 5’-TGCTGCGCCA-3’ in direct repeats at 3’-end of icd gene.The truncated lambda integrases (ECP_1132 and ECP_1135) are inactive because the transposon inserted the integrase gene by 5’-CCTGG-3’. This Fe2+/Mn2+ transport operon is predicted that is a recent product of horizontal gene transfer in E. coli because this operon is also existed in S. enterica and is not in a mobile GIs.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 482-484)

Pages:

2218-2222

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] U. Dobrindt, B. Hochhut, U. Hentschel, et al.: Nat Rev Microbiol, 2: 414–424. (2004)

Google Scholar

[2] J. Hacker, and E. Carniel: EMBO Rep, 2(5):376-381. (2001)

Google Scholar

[3] M. Juhas, J.R. van der Meer, M. Gaillard, et al.: FEMS Microbiol Rev, 33: 376–393. (2009)

Google Scholar

[4] J. Hacker, L. Bender, M. Ott, et al.: Microb Pathog, 8:213–225. (1990)

Google Scholar

[5] Y. Mantri, and K.P. Williams,: Nucleic Acids Res, 32:D55-D58. (2004)

Google Scholar

[6] A. Marchler-Bauer, J.B. Anderson, F. Chitsaz, et al.: Nucleic Acids Res, 37(Database issue):D205-D210. (2009)

Google Scholar

[7] M.W. van Passel, A.C. Luyf, A.H. van Kampen, et al.: Bioinformatics, 21(13):3053-3055. (2005)

DOI: 10.1093/bioinformatics/bti460

Google Scholar

[8] K. Tamura, D. Peterson, N. Peterson, et al.: Mol Biol Evol, 28(10):2731-2739. (2011)

Google Scholar

[9] F.S. Wang, T.S. Whittam, and R.K. Selander,: J Bacteriol, 179(21):6551-6559. (1997)

Google Scholar

[10] H. Wang, C.H. Yang, G. Lee, et al.: J Bacteriol, 179(18):5705-5711. (1997)

Google Scholar

[11] K. Murakami, R. Tsubouchi, M. Fukayama, et al.: Arch Microbiol, 186(5):385-392. (2006)

Google Scholar