Surface Effects on the Buckling of Piezoelectric Nanobeams

Article Preview

Abstract:

In this paper, we analyze the influence of surface effects including residual surface stress, surface piezoelectric and surface elasticity on the buckling behavior of piezoelectric nanobeams by using the Timoshenko beam theory and surface piezoelectricity model. The critical electric potential for buckling of piezoelectric nanobeams with different boundary condition is obtained analytically. From the results, it is found that the surface piezoelectric reduces the critical electric potential. However, a positive residual surface stress increases the critical electric potential. In addition, the shear deformation reduces the critical electric potential, and the influence of shear deformation become more significant for a stubby piezoelectric nanobeam.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

519-523

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. D. Bai, P. X. Gao, Z. L. Wang and E. G. Wang: Appl. Phys. Lett. Vol. 82 (2003), p.4806.

Google Scholar

[2] C. Q. Chen, Y . Shi, Y. S. Zhang, J . Zhu and Y. J. Yan: S Phys. Rev. Lett. Vol. 96 (2006), p.075505.

Google Scholar

[3] Y. H. Huang, X. D. Bai and Y. Zhang: J. Phys.: Condens. Matter Vol . 18 (2006), p.84.

Google Scholar

[4] X. D. Wang, J. Zhou, J. H. Song, J . Liu, N. S. Xu and Z. L. Wang: Nano Lett. Vol. 6(2006), p.2768.

Google Scholar

[5] J. H. He, C. L. Hsin, J . Liu, L. J. Chen and Z. L. Adv. Mater Vol. 19(2007), p.781.

Google Scholar

[6] Z. L. Wang and J. H. Song: Science Vol. 312(2006), p.242.

Google Scholar

[7] R. Agrawal, B. Peng, E. E. Gdoutos and H. D. Espinosa: Nano Lett. Vol. 8(2008), p.3668.

Google Scholar

[8] G. F. Wang and X. Q. Feng: Appl. Phys. Lett. Vol. 94 (2009), p.141913.

Google Scholar

[9] M. E. Gurtin, X. Markenscoff and R. N. Thurston: Appl. Phys. Lett. Vol. 29(1976), p.529.

Google Scholar

[10] P. Lu , H. P. Lee, C . Lu: Phys. Rev. B Vol. 72 (2005), p.085405.

Google Scholar

[11] J. He and C. M. Lilley: Appl. Phys. Lett. Vol. 93(2008), p, 263108.

Google Scholar

[12] H. S. Park. Nanotechnology Vol. 20 (2009), p.115701.

Google Scholar

[13] G. F. Wang and X. Q. Feng: Europhys. Lett. Vol. 91(2010 ), p.56007.

Google Scholar

[14] Z. Yan and L. Y. Jiang: Nanotechnology Vol. 22(2011), p.245703.

Google Scholar

[15] G. Y. Huang and S. W. Yu: Phys. Status Solidi b Vol. 243 (2006), p.22.

Google Scholar

[16] M. E. Gurtin, J. Weissmuller, and F. Larche: Philos. Mag. A Vol. 78 (1998), p.1093.

Google Scholar

[17] Y. F. Gao and Z.L. Wang: Nano lett. Vol. 7(2007).

Google Scholar