The Preparation of BiOCl Microspheres and its Photocatalytic Performance

Article Preview

Abstract:

The BiOCl microspheres photocatalyst was obtained by a one-step alcohol-heating method. The reactants were Bi(NO3)3•5H2O、TiCl3 and absolute ethanol, and the sample was synthesized at 100°C and calcined at 600°C. It then characterized by XRD, SEM, UV-vis DRS. The results showed that the sample was microspheres, having excellent photocatalytic activity that the sample could degradate more than 94% of RhB in 65 minites which is better than P25 under UV irradiation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

841-844

Citation:

Online since:

March 2012

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Fujishima, Rao T. N., Tryk D. A. Titanium dioxide photocatalysis[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2000, 1(1): 1-21.

DOI: 10.1016/s1389-5567(00)00002-2

Google Scholar

[2] M. R. Hoffmann, Martin S. T., Choi W., Bahnemann D. W. Environmental Applications of Semiconductor Photocatalysis[J]. Chemical Reviews, 1995, 95(1): 69-96.

DOI: 10.1021/cr00033a004

Google Scholar

[3] C. S. Turchi, Ollis D. F. Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack[J]. Journal of Catalysis, 1990, 122(1): 178-192.

DOI: 10.1016/0021-9517(90)90269-p

Google Scholar

[4] X. Chen, Mao S. S. Titanium Dioxide Nanomaterials:  Synthesis, Properties, Modifications, and Applications[J]. Chemical Reviews, 2007, 107(7): 2891-2959.

DOI: 10.1021/cr0500535

Google Scholar

[5] P. Wang, Huang B., Qin X., Zhang X., Dai Y., Wei J., Whangbo M. -H. Ag@AgCl: A Highly Efficient and Stable Photocatalyst Active under Visible Light[J]. Angewandte Chemie International Edition, 2008, 47(41): 7931-7933.

DOI: 10.1002/anie.200802483

Google Scholar

[6] J. Yu, Dai G., Huang B. Fabrication and Characterization of Visible-Light-Driven Plasmonic Photocatalyst Ag/AgCl/TiO2 Nanotube Arrays[J]. The Journal of Physical Chemistry C, 2009, 113(37): 16394-16401.

DOI: 10.1021/jp905247j

Google Scholar

[7] Y. Zang, Farnood R. Photocatalytic activity of AgBr/TiO2 in water under simulated sunlight irradiation[J]. Applied Catalysis B: Environmental, 2008, 79(4): 334-340.

DOI: 10.1016/j.apcatb.2007.10.019

Google Scholar

[8] C. He, Gu M. Photocatalytic activity of bismuth germanate Bi12GeO20 powders[J]. Scripta Mater, 2006, 54(7): 1221-1225.

DOI: 10.1016/j.scriptamat.2005.12.028

Google Scholar

[9] K. -L. Zhang, Liu C. -M., Huang F. -Q., Zheng C., Wang W. -D. Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst[J]. Applied Catalysis B: Environmental, 2006, 68(3-4): 125-129.

DOI: 10.1016/j.apcatb.2006.08.002

Google Scholar

[10] Z. Deng, et al. Strong blue photoluminescence from single-crystalline bismuth oxychloride nanoplates[J]. Nanotechnology, 2008, 19(29): 295705.

DOI: 10.1088/0957-4484/19/29/295705

Google Scholar

[11] H. An, Du Y., Wang T., Wang C., Hao W., Zhang J. Photocatalytic properties of BiOX (X = Cl, Br, and I)[J]. Rare Metals, 2008, 27(3): 243-250.

DOI: 10.1016/s1001-0521(08)60123-0

Google Scholar

[12] H. Deng, Wang J., Peng Q., Wang X., Li Y. Controlled Hydrothermal Synthesis of Bismuth Oxyhalide Nanobelts and Nanotubes[J]. Chemistry – A European Journal, 2005, 11(22): 6519-6524.

DOI: 10.1002/chem.200500540

Google Scholar

[13] C. Wang, Shao C., Liu Y., Zhang L. Photocatalytic properties BiOCl and Bi2O3 nanofibers prepared by electrospinning[J]. Scripta Mater, 2008, 59(3): 332-335.

DOI: 10.1016/j.scriptamat.2008.03.038

Google Scholar

[14] F. Chen, Liu H., Bagwasi S., Shen X., Zhang J. Photocatalytic study of BiOCl for degradation of organic pollutants under UV irradiation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 215(1): 76-80.

DOI: 10.1016/j.jphotochem.2010.07.026

Google Scholar