[1]
K. Inada: Studies on a Method for Determining the Deepness of Green and Color Chlorophyll Content of Intact Crop Leaves and Its Practical Applications. I. Principle for estimating the deepness of green color and chlorophyll content of whole leaves, Proceedings of the Crop Science Society of Japan, Vol.32, 1963, pp.157-162
DOI: 10.1626/jcs.32.157
Google Scholar
[2]
H. M. Benedict, and R. Swidler: Nondestructive Method for Estimating Chlorophyll Content of Leaves, Science, Vol.133, No.3469, 1961, pp.2015-2016
DOI: 10.1126/science.133.3469.2015
Google Scholar
[3]
K. Inada: Spectral Ratio of Reflectance for Estimating Chlorophyll Content of Leave, Japenese Journal of Crop Science, Vol. 54, No.3, 1985, pp.261-265
DOI: 10.1626/jcs.54.261
Google Scholar
[4]
V. K. Choubey, and Rani Choubey: Spectral Reflectance, Growth and Chlorophyll Relationships for Rice Crop in a Semi-Arid Region of India, Water Resources Management, Vol. 13, 1999, pp.73-84
Google Scholar
[5]
Y.-J. Lee, C.-M. Yang, K.-W. Chang, and Y. Shen: A Simple Spectral Index Using Reflectance of 735 nm to Assess Nitrogen Status of Rice Canopy, Agronomy Journal, Vol.100, No.1, 2008, pp.205-212
DOI: 10.2134/agronj2007.0018
Google Scholar
[6]
C.W. Wood, D.W. Reeves, and D.G. Himelrick: Relationships between chlorophyll meter reading and leaf chlorophyll concentration, N status, and crop yield: A review, Proc. Agron. Soc. Vol.23, New Zealand, 1993, pp.1-9
Google Scholar
[7]
F. J. Adamsen, P. J. Jr. Pinter, E. M. Barnes, R. L. LaMorte, G. W. Wall, S. W .Leavitt, and B. A. Kimball: Measuring Wheat Senescence Using a Digital Camera, Crop Science, Vol.39, 1999, pp.719-724
DOI: 10.2135/cropsci1999.0011183x003900030019x
Google Scholar
[8]
P. C. Scharf, and J. A. Lory: Calibrating Corn Color from Aerial Photographs to Predict Sidedress Nitrogen Need, Agronomy Journal, Vol.94, 2002, pp.397-404
DOI: 10.2134/agronj2002.3970
Google Scholar
[9]
W. Liu, S. Mao, Y. Li, Y. Han, X. Wang, G. Wang, Z. Fang, and P. Li: Color based Cotton Leaf Nitrogen Content Estimation, China Cotton, Vol.34, No.11, 2007, pp.22-23 (in Chinese)
Google Scholar
[10]
Y. Zhang, H. Mao, X. Zhang, and D. Zhao: Nitrogen Information Measurement of Canola Leaves Based on Multispectral Vision, Journal of Agricultural Mechanization Research, Vol.31, No.11, 2009, pp.83-85 (in Chinese)
Google Scholar
[11]
C. Hu, and P. Li: Application of image processing to diagnose cucumbers short of Mg and N, Journal of Jiangsu University (Natural Science Edition), Vol..25, No.1, 2004, pp.9-12 (in Chinese)
Google Scholar
[12]
H. Mao, G. Xu, and P. Li: Diagnosis of Nutrient Deficiency of Tomato Based on Computer Vision, Transactions of the Chinese Society for Agricultural Machinery, Vol.34, No.2, 2003, pp.73-75(in Chinese)
Google Scholar
[13]
X. Yao, W. Luo, and Z. Yuan: An Adaptive and Quantitative Rubber Nutrient Status Analyzing System by Digital Foliar Images, Proc. Of The 3rd IEEE International Congress on Image and Signal Processing (CISP 2010), Yantai, China, Oct. 16-18, 2010, pp.2492-2495
DOI: 10.1109/cisp.2010.5647929
Google Scholar
[14]
X. Yao, W. Du, S. Feng, and J. Zhou: Image-based Plant Nutrient Status Analysis: An Overview, Proc. Of IEEE International Conf. on Intelligent Computing and Intelligent Systems (ICIS2010), Xiamen, China, Oct. 29-31, 2010, pp.460-464
DOI: 10.1109/icicisys.2010.5658601
Google Scholar