Fuel Cost Optimization of Power Systems Inclouding HVDC Line

Article Preview

Abstract:

Effect of HVDC transmission lines in a power system on different optimal power flow (OPF) objective functions is discussed in this paper. In this study differential evolution optimization algorithm is applied in AC-DC OPF problem, and compared with OPF in the same power system with no HVDC transmission lines to demonstrate the effect of this type of transmission line on the objective functions. In OPF problem definition, generator fuel cost considering valve effect is considered as objective function. The results of the proposed method on IEEE 30-bus power system illustrate that HVDC transmission lines improves the OPF from fuel cost point of view.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 488-489)

Pages:

1788-1792

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Ambriz-Pe´rez a, E. Acha b, C.R. Fuerte-Esquivel: High voltage direct current modelling in optimal power flows, Int. J. Elect. Power Energy Syst., Vol. 30 (2008), p.157.

DOI: 10.1016/j.ijepes.2007.06.010

Google Scholar

[2] Juan, Wei Yan, Wenyuan Li, Lili Wen: Quadratic models of AC–DC power flow and optimal reactive power flow with HVDC and UPFC controls, Int. J. Elect. Power Energy Syst., Vol. 78 (2008), p.157.

DOI: 10.1016/j.epsr.2007.02.009

Google Scholar

[3] Fudeh H, Ong MN: A simple and efficient AC–DC load-flow method for multiterminal DC systems, IEEE Trans Power Apparatus Syst, Vol. 100 (1981), p.4389.

DOI: 10.1109/tpas.1981.316850

Google Scholar

[4] J. Reeve, G. Fahmy, B. Stott: Versatile load flow method for multiterminal HVDC systems, IEEE Trans Power Apparatus Syst, Vol. 96 (1977), p.238.

DOI: 10.1109/t-pas.1977.32405

Google Scholar

[5] MN. Ong, H. Fudeh: AC power flow control with a multiterminal DC Systems, IEEE Trans Power Apparatus Syst, Vol 100 (1981), p.4686.

DOI: 10.1109/tpas.1981.316785

Google Scholar

[6] Lu CN, Chen SS, Ong CM: The incorporation of HVDC equations in optimal power flow methods using sequential quadratic programming techniques, IEEE Trans Power Apparatus Syst, Vol 3 (1988), p.1005.

DOI: 10.1109/59.14554

Google Scholar

[7] J. A. Momoh, M.E. El-Hawary, and R. Adapa: A review of selected optimal power flow literature to 1993. II. Newton, linear programming and interior point methods, IEEE Trans. Power Syst., Vol. 14 (1999), p.105.

DOI: 10.1109/59.744495

Google Scholar

[8] M. R. AlRashidi, and M. E. El-Hawary: Hybrid particle swarm optimization approach for solving the discrete OPF problem considering the valve loding effects, IEEE trans. on Power Syst., Vol. 22 (2007), p. (2030).

DOI: 10.1109/tpwrs.2007.907375

Google Scholar

[9] J. Arrillag and B. Smith: AC-DC power system analysis, IEE Power Engineering Series, (1998).

Google Scholar

[10] O. A. Mousavi, M. J. Sanjari, G.B. Gharehpetian and R.A. Naghizadeh: A Simple and Unified Method to Model HVDC Links and FACTS Devices in DC Load Flow, Simulation, Vol. 85 (2009), p.101.

DOI: 10.1177/0037549708100179

Google Scholar

[11] M. Varadarajan and K. S. Swarup: Differential evolutionary algorithm for optimal reactive power dispatch, International Journal of Electrical Power & Energy Systems, Vol. 30 (2008), p.435.

DOI: 10.1016/j.ijepes.2008.03.003

Google Scholar

[12] R. Storn and K. Price: Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces, Journal of Global Optimization, Vol. 11 (1997), p.341.

Google Scholar

[13] IEEE 30-Bus Test System: http: /www. ee. washington. edu/research/pstca/pf30/pg_tca30bus. htm.

Google Scholar