Mechano-Chemical Synthesis of TiB2-Al2O3 Nano-Composite by Reaction between TiO2, B2O3 and Al

Article Preview

Abstract:

In this research a composite structure containing of a TiB2 matrix with dispersed Al2O3 particles was obtained via mechanical alloying of Al, TiO2 and B2O3 powder mixture. The mixture was milled for different lengths of time. Phase evolutions of the milled powder mixture were investigated. Powder particle characteristics were evaluated by XRD, SEM and TEM techniques. The XRD results reveal that the reaction begins during first 10 h milling by formation of TiB2 and Al2O3¬ phases and further milling causes partial amorphization of powder mixture. SEM micrograph of the sample milled for 30 h exhibited ultrafine particles of Al2O3-TiB2, but TEM images show that particles consist of some grains in the range of nano-size. The mean crystallite size of final product is about 25 nm.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 488-489)

Pages:

955-959

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.H. Mayrhofer, C. Mitterer, L. Hultman and H. Clemens: Prog. Mater. Sci. Vol. 51 (2006), pp.1032-1114.

Google Scholar

[2] W.G. Fahrenholtz, G.E. Hilmas, I.G. Talmy and J.A. Zaykoski: J. Am. Ceram. Soc. Vol. 90 (2007), pp.1347-1364.

Google Scholar

[3] G. Volonakis, L. Tsetseris and S. Logothetids: Mat. Sci. Eng. B-Solid. Vol. 176 (2011), pp, 484-489.

Google Scholar

[4] S. Rodriguez, V.B. Munoz, E.V. Esquivel and L.E. Murr: J. Mater. Sci. Lett. Vol. 21 (2002), pp.1661-1666.

Google Scholar

[5] J.M. Sanchez, I. Azcona and F. Castro: J. Mater. Sci. Vol. 35 (2000), pp.9-14.

Google Scholar

[6] R.H. Plovnick and E.A. Richards: Mater. Res. Bull. Vol. 36 (2001), pp.1487-1493.

Google Scholar

[7] R. A. Andrievski: Int. J. Refract. Met. H. Mat. Vol. 19 (2001), pp.447-452.

Google Scholar

[8] M. Darabara, G.D. Papadimitriou and L. Bourithis: Surf. Coat. Tech. Vol. 201 (2006), pp.3518-3523.

Google Scholar

[9] A. Bellosi and F. Monteverde: Key Eng. Mat. Vol. 175-176 (2000), pp.139-148.

Google Scholar

[10] S.H. Kang and D.J. Kim: J. Am. Ceram. Soc. Vol. 84 (2001), pp.893-895.

Google Scholar

[11] A.R. Keller and M. Zhou: J. Am. Ceram. Soc. Vol. 86 (2003), pp.449-457.

Google Scholar

[12] R.H. Plovnick and E.A. Richards: Mater. Res. Bull. Vol. 36 (2001), pp.1487-1493.

Google Scholar

[13] W. Deqing: J. Eur. Ceram. Soc. Vol. 29 (2009), pp.1485-1492.

Google Scholar

[14] W. J Tang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, H. Wang, Y.C. Wang and Q.J. Zhang: Powder Technol. Vol. 167 (2006), pp.117-123.

Google Scholar

[15] J. Matsushita, S. Hayashi and H. Saito: J. Ceram. Soc. Jpn. Vol. 97 (1989), pp.1206-1210.

Google Scholar

[16] C. Suryanarayana: Prog. Mater. Sci. Vol. 46 (2001), pp.1-184.

Google Scholar

[17] E. Mohammad Shaeifi, F. Karimzadeh and M. H. Enayati: Adv. Powder Technol., Article in Press.

Google Scholar

[18] M.A. Khaghani-Dehghani, R. Ebrahimi-Kahrizsangi, N. Setoudeh and B. Nasiri-Tabrizi: Int. J. Refract. Met. H. Mat. Vol. 29 (2011), pp.244-249.

Google Scholar

[19] V.I. Fadeeva and A.V. Leonov: Mat. Sci. Eng. A. Vol. 206 (1996), pp.90-94.

Google Scholar

[20] N. J. Welham: J. Am. Ceram. Soc. Vol. 83 (2000), pp.1290-1292.

Google Scholar

[21] M. Bodaghi, H. Zolfonoon, M. Tahriri and M. Karimi: Solid State Sci. Vol. 11 (2009), pp.496-500.

DOI: 10.1016/j.solidstatesciences.2008.06.021

Google Scholar

[22] C. Suryanarayana: Mechanical alloying and milling (Marcel Dekker, USA 2004).

Google Scholar