Adsorption of Pb(II) by Silica/Yeast Composites from Aqueous Solution: Kinetic and Equilibrium Studies

Article Preview

Abstract:

Silica/yeast composites were prepared for removal of Pb(II) from aqueous solution. The effects of pH, contact time and initial concentration were examined. The optimum pH was 5.0. The kinetic data were investigated by pseudo-first-order and pseudo-second-order models. The kinetic rates were better fitted to the pseudo-second-order model. The experimental data were fitted with the Langmuir and Freundlich models to analyze the equilibrium isotherms. The maximum adsorption capacity calculated from Langmuir isotherm was 73.53 mg/g. The Langmuir isotherm was more favorable to describe the experimental data.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

476-479

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.H. Reddy, K. Seshaiah, A.V. Reddy, M.M. Rao and M.C. Wang: J. Hazard. Mater. Vol. 831–838 (2010), p.174.

Google Scholar

[2] M. Yurtsever, I. Ayhan and Sengil: J. Hazard. Mater. Vol. 58–64 (2009), p.163.

Google Scholar

[3] T.G. Kazi, N. Jalbani, N. Kazi, M.K. Jamali, M.B. Arain, H.I. Afridi, A. Kandhro and Z. Pirzado: Renal Failure Vol. 737–745 (2008), p.30.

DOI: 10.1080/08860220802212999

Google Scholar

[4] H.I. Afridi, T.G. Kazi, G.H. Kazi, M.K. Jamali and G.Q. Shar: Biol. Trace Elem. Res. Vol. 19–34 (2006), p.113.

Google Scholar

[5] A.H. Sulaymon, B.A. Abid and J.A. Al-Najar: Chem. Eng. J. Vol. 647–653 (2009), p.155.

Google Scholar

[6] M.D. Machado, M.S.F. Santos, C. Gouveia, H.M.V.M. Soares and E.V. Soares: Bioresour. Technol. Vol. 2107–2115 (2008), p.99.

Google Scholar

[7] R. Han, H.K. Li, Y.H. Li, J.H. Zhang, H.J. Xiao and J. Shi: J. Hazard. Mater. B Vol. 1569–1576 (2006), p.137.

Google Scholar

[8] T. Nomura, Y. Morimoto, M. Ishikawa, H. Tokumoto and Y. Konishi: Adv. Powder Technol. Vol. 8-12 (2010), p.21.

Google Scholar

[9] D. Weinzierl, A. Lind and W. Kunz: Cryst. Growth Des. Vol. 2318-2323 (2009), p.9.

Google Scholar

[10] V.C. Taty-Costodes, H. Fauduet, C. Porte and A. Delacroix: J. Hazard. Mater. B Vol. 121–142 (2003), p.105.

Google Scholar

[11] A.E. Ofomaja, E.I. Unuabonah and N.A. Oladoja: Bioresour. Technol. Vol. 3844–3852 (2010), p.101.

Google Scholar

[12] I. Yahiaoui, A. Belattaf, A. Aissani-Benissad, and L.Y. Cherif: J. Chem. Eng. Data. Vol. 3999-4005 (2011), p.56.

DOI: 10.1021/je200267b

Google Scholar

[13] Y.S. Ho and G. McKay: Water Res. Vol. 578–584 (1999), p.33.

Google Scholar

[14] Y.S. Ho and G. McKay: Process Biochem. Vol. 451–465 (1999), p.34.

Google Scholar

[15] S. Tunali, A. Cabuk and T. Akar: Chem. Eng. J. Vol. 203–211 (2006), p.115.

Google Scholar

[16] D. Ozdes, A. Gundogdu, B. Kemer, C. Duran, H.B. Senturk and M. Soylak: J. Hazard. Mater. Vol. 1480–1487 (2009), p.166.

Google Scholar

[17] M. Mazzotti: J. Chromatogr. A Vol. 311–322 (2006), p.1126.

Google Scholar

[18] S.J. Allen, G. Mckay and J.F. Porter: J. Colloid Interface Sci. Vol. 322–333 (2004), p.280.

Google Scholar