Enhanced Direct Electrochemistry of Glucose Oxidase and Glucose Biosensing Based on TiO2-Decorated Graphene Nanohybrids

Article Preview

Abstract:

Using TiO2-decorated graphene (TiO2-G) nanohybrids as the immobilized platform for redox protein, and selecting glucose oxidase (GOD) as model enzyme, the direct electrochemistry of GOD was investigated in this paper. By virtue of the synergetic effect between graphene and TiO2 nanoparticles, the direct electron transfer of GOD on the TiO2-G nanohybrids modified electrode was remarkably promoted with a rate constant of 3.24 s-1. Moreover, based on the decrease of the electrocatalytic response of the reduced form of GOD by dissolved oxygen, a glucose biosensor was developed, which showed a satisfactory analytical performance for glucose determination over an acceptable linear concentration range from 5×10−4 to 2×10−2 mol/L. All these results demonstrated the great significance of such TiO2-G nanohybrids for the immobilization of enzyme and other biomolecules.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

507-510

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal: Prog Mater Sci 56 (2011) 1178.

Google Scholar

[2] D. Wang, D. Choi, J. Li, Z. Yang, Z. Nie, R. Kou: ACS Nano 3 (2009) 907.

Google Scholar

[3] Z.F. Du, X.M. Yin, M. Zhang, Q.Y. Hao, Y.G. Wang, T.H. Wang: Mater Lett 64 (2010) (2076).

Google Scholar

[4] J.F. Wu, M.Q. Xu, G.C. Zhao: Electrochem. Commun. 12 (2010) 175.

Google Scholar

[5] K. Zhou, Y. Zhu, X. Yang, C. Li: Electroanalysis 23 (2011) 862.

Google Scholar

[6] C.S. Shan, H.F. Yang, J.F. Song, D.X. Han, A. Ivaska, L. Niu: Anal. Chem. 81 (2009) 2378.

Google Scholar

[7] K. Wang, H.N. Li, J. Wu, C. Ju, J.J. Yan, Q. Liu, B.J. Qiu: Analyst 136 (2011) 3349.

Google Scholar

[8] W. Sun, X. Li, Y. Wang, X. Li, C. Zhao, K. Jiao: Bioelectrochemistry 75 (2009) 170.

Google Scholar

[9] L. Yang, X. Ren, F. Tang, L. Zhang: Biosens. Bioelectron. 25 (2009) 889.

Google Scholar

[10] E. Laviron: J. Electroanal. Chem. 101 (1979) 19.

Google Scholar

[11] M. Tasviri, H.A. Rafiee-Pour, H. Ghourchian, M.R. Gholami: J. Mol. Catal. B: Enzym 68 (2011) 206.

Google Scholar

[12] X. Kang, J. Wang, H. Wu, I.A. Aksay, J. Liu, Y. Lin: Biosens. Bioelectron. 25 (2009) 901.

Google Scholar

[13] S. Deng, G. Jian, J. Lei, Z. Hu, H. Ju: Biosens. Bioelectron. 25 (2009) 373.

Google Scholar

[14] S. Liu, H. Ju: Biosens. Bioelectron. 19 (2003) 177.

Google Scholar

[15] Z.H. Dai, J. Ni, X.H. Huang, G.F. Lu, J.C. Bao: Bioelectrochemistry 70 (2007) 250.

Google Scholar