Surface Treatment of PPTA Fiber and Properties of its Composite Materials

Article Preview

Abstract:

Surface modification of Poly(ρ-phenylene terephthalamide) (PPTA) fiber has been considered an effcient way to increase the interfical bonding of the fiber/epoxy composites. In this article, the hydrogen peroxide solutions (H2O2) was used to treat the PPTA fiber based on an orthogonal experimental design. The optimum conditions of H2O2 treatment were concentration of 40%, treating temperature 40°C and treating time 60min. The morphology of the modified fiber were characterized by scanning electron microscope (SEM). The interfacial properties of aramid fiber/epoxy composites were investigated by the single fiber pull-out test (SFP. The results showed that the interfacial shear strength (IFSS) of aramid/epoxy composites was remarkbly improved which was attributed to the fact that some polar groups were introduced into the molecular structure of aramid fibers and the physical structure of the treated fibers was not etched obviously.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

227-232

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.J. Day, K.D. Hewson, P.A. Lovell, Surface modification and its effect on the interfacial properties of model aramid-fibre/epoxy composites, Compos. Sci. Technol. 62(2002) 153-156.

DOI: 10.1016/s0266-3538(01)00135-x

Google Scholar

[2] C.Y. Yue, G.X. Sui, H.C. Looi, Effects of heat treatment on the mechanical properties of Kevlar-29 fibre, Compos. Sci. Technol. 60(2000) 421-427.

DOI: 10.1016/s0266-3538(99)00137-2

Google Scholar

[3] R.J. Young, D.J. Bannister, A.J. Cervenka, I. Ahmad, Effect of surface treatment upon the pull-out behaviour of aramid fibres from epoxy resins, J. Mater. Sci. 35(2000) 1939-1947.

Google Scholar

[4] M.G. Dobb, D.J. Johhson, B.P. Saville, Supramolecular structure of a high- modulus polyaromatic fiber (Kevlar 49), J. Polym. Sci. 15(1997) 2201-2211.

DOI: 10.1002/pol.1977.180151212

Google Scholar

[5] W.F., McDonald, M.W. Urban, Modification of the PPTA fiber surfaces by ultrasonic waves, Polym. Mater. Sci. Eng. 59(1988) 306-310.

Google Scholar

[6] R. Benrashid, C. Tesoro Giuliana, Effect of surface-limited reactions on the properties of Kevlar fibers, Text. Res.J. 60 (1990) 334-344.

DOI: 10.1177/004051759006000604

Google Scholar

[7] E.M. Kim, J. Jang, Surface modification of meta-aramid films by UV/ozone irradiation, J. Fiber Polym. 11 (2010) 677-682.

DOI: 10.1007/s12221-010-0677-5

Google Scholar

[8] L.M. Plawky, W. Michaeli, Surface modification of an aramid fibre treated in a low-temperature microwave plasma, Mater. Sci. 31(1996) 6043-6053.

DOI: 10.1007/bf01152157

Google Scholar

[9] K. Kuepper, P. Schwartz, Modification of the fiber-matrix interface of p-aramid fibers using gas plasmas, Adhes. Sci. Technol. 5(1991) 165-176.

Google Scholar

[10] D. Knittel, W. Kesting, E. Schollmeyer, Surface structuring of synthetic fibres by UV laser irradiation. I. Phenomenological report, E. Polym. Int. 43(1997) 231-239.

DOI: 10.1002/(sici)1097-0126(199707)43:3<231::aid-pi797>3.0.co;2-e

Google Scholar

[11] M. Mori, Y. Uyama, Y. Ikada, Surface modification of aramid fibre by graft polymerization, Polymer. 35(1994) 5336-5341.

DOI: 10.1016/0032-3861(94)90487-1

Google Scholar

[12] F. Poncin-Epaillard, B. Chevet, J.C. Brosse, Study of an aramid surface reactivity: modification with a cold plasma or an electron beam followed by a postgrafting reaction, J. Appl. Polym. Sci. 52(1994) 1047-1061.

DOI: 10.1002/app.1994.070520806

Google Scholar

[13] J. Maity, C. Jacob, C.K. Das, S. Alam, R.P. Singh, Direct fluorination of Twaron fiber and the mechanical, thermal and crystallization behaviour of short Twaron fiber reinforced polypropylene composites, Compos. Part A-Appl. S. 39(2008) 825-833.

DOI: 10.1016/j.compositesa.2008.01.009

Google Scholar

[14] T. Ai, R.M. Wang, W.Y. Zhou, Effect of grafting alkoxysilane on the surface properties of kevlar fiber, Polym. Compos. 28(2007) 412-416.

DOI: 10.1002/pc.20313

Google Scholar

[15] G.N. Fan, J.C. Zhao, Y.Q. Zhang, Z. Guo, Grafting modification of Kevlar fiber using horseradish peroxidase, Polym. Bull. 56(2006) 507-515.

DOI: 10.1007/s00289-005-0495-x

Google Scholar

[16] T.M. Liu, Y.S. Zheng, J. Hu, Surface modification of aramid fibers with novel chemical approach, J. Polym. Bull. 66(2011) 259-275.

DOI: 10.1007/s00289-010-0313-y

Google Scholar

[17] R. Park, J. Jang, Effects of hybridization on the mechanical performance of aramid/ polyethylene intraply fabric composites, Compos. Sci. Technol. 58(2004) 1621-1628.

DOI: 10.1016/s0266-3538(97)00228-5

Google Scholar

[18] R. Mahmoud, D. Charles, Polymerization compounding of HDPE/Kevlar composites. I. Morphology and mechanical properties, Polym. Compos. 27(2006) 129-137.

DOI: 10.1002/pc.20159

Google Scholar

[19] A.B. Coffey, C. M.O'Bradaigh, R.J. Young, Interfacial stress transfer in an aramid reinforced thermoplastic elastomer, J. Mater. Sci. 42(2007) 8053-8061.

DOI: 10.1007/s10853-007-1680-0

Google Scholar

[20] J. Kalantar, L.T. Drzal, The bonding mechanism of aramid fibres to epoxy matrices, J. Mater. Sci. 25(1990) 4186-4193.

DOI: 10.1007/bf00581071

Google Scholar

[21] A.A. Leal, J.M. Deitzel, S.H. McKnight, Jr. Gillespie, Interfacial behavior of high performance organic fibers, Polymer. 50(2009) 1228-1235.

DOI: 10.1016/j.polymer.2009.01.018

Google Scholar