Determination of Kinetic Parameters of Maize Starch in Air Using Thermogravimetric Analysis

Article Preview

Abstract:

Maize starch is abundant in quantity in China. The hazard from dust explosion of maize starch was very great. Number simulation is a good way to predict the consequent of dust explosion, but the known of reaction kinetics of hazardous materials is necessary. The objective of this research was to determine the reaction kinetics of maize starch using thermo-gravimetric analyses. Thermo-gravimetric analyses of maize starch were performed at heating rates of 5, 10, and 15 min-1 in an air atmospheres. The weight losses of maize starch in an air atmosphere were found to occur in three stages. The parameters of the reaction kinetics were obtained in Stage and .

You might also be interested in these eBooks

Info:

Periodical:

Pages:

114-117

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Starch industry Report. The eleventh five-year-plan of starch industry in China. Information on http: /www. siacn. org/NewsView. asp?ID=168&SortID=25, (2007).

Google Scholar

[2] H.Y. Xie: maize starch explosion at QinHuangDao LiHua Starch Co., LTD., Information on http: /www. chinanews. com/gn/news/2010/02-25/2139532. shtml, (2010).

Google Scholar

[3] S.A. Abbasi: Dust explosions-Cases, causes, consequences, and control, J Hazard Mater, 140 (2007) 7-44.

Google Scholar

[4] K.N. Palmer: Dust Explosions and Fire. London: Chapman & Hall, (1973).

Google Scholar

[5] S. Maiti, S. Dey, S. Purakayastha, B. Ghosh: Physical and thermochemical characterization of rice husk char as a potential biomass energy source, Bioresource Technol 97 (2006) 2065–(2070).

DOI: 10.1016/j.biortech.2005.10.005

Google Scholar

[6] Y.Q. Tiana, Y. Li, X.M. Xu, Z.Y. Jin: Starch retrogradation studied by thermogravimetric analysis(TGA). Carbohyd Polym, 84 (2011) 1165–1168.

DOI: 10.1016/j.carbpol.2011.01.006

Google Scholar

[7] E. Rudnik, G. Matuschek, N. Milanov, A. Kettrup: Thermal properties of starch succinates. Thermochim Acta, 427 (2005) 163–166.

DOI: 10.1016/j.tca.2004.09.006

Google Scholar

[8] X.L. Wang, K.K. Yang, Y.Z. Wang, B. Wu, Y. Liu, B. Yang: Thermogravimetric analysis of the decomposition of poly(1, 4-dioxan-2-one)starch blends, Polym Degrad and Stabil, 81 (2003) 415–421.

DOI: 10.1016/s0141-3910(03)00126-5

Google Scholar

[9] W.M. Peng, Q.Y. Wu, P.G. Tu, N.M. Zhao: Pyrolytic characteristics of microalgae as renewable energy source determined by thermogravimetric analysis[J], Bioresource Technol, 80 (2001) 1-7.

DOI: 10.1016/s0960-8524(01)00072-4

Google Scholar

[10] J. Wang, G.C. Wang, M.X. Zhang, M.Q. Chen, D.M. Li, F.F. Min, M.G. Chen, S.P. Zhang, Z.W. Ren, Y.J. Yan: A comparative study of thermolysis characteristics and kinetics of seaweeds and fir wood. Process Biochem, 41 (2006) 1883–1886.

DOI: 10.1016/j.procbio.2006.03.018

Google Scholar

[11] J. Wang: Experimental investigation and numerical simulation of grain dust explosion. Northeastern University. 2010, pp.49-50.

Google Scholar

[12] A. Kumar, L.J. Wang, Y.A. Dzenis, D.D. Jones, M.A. Hanna: Thermogravimetric characterization of corn stover as gasification and pyrolysis feedstock. Biomass bioenerg, 32 (2008) 460 – 467.

DOI: 10.1016/j.biombioe.2007.11.004

Google Scholar

[13] K.G. Mansaray, A.E. Ghaly: Determination of kinetic parameters of rice husks in oxygen using thermogravimetric analysis. Biomass Bioenerg, 17 (1999) 19- 31.

DOI: 10.1016/s0961-9534(99)00022-7

Google Scholar