A Study on Grinding Rate of Mica Particles

Article Preview

Abstract:

Grinding rate of mica particles by a planetary ball mill was studied by the measurement of specific breakage rate and breakage distribution parameter for different size ranges. The relationships between specific breakage rate and breakage distribution parameter with particle size were obtained from the measured results. The results show that grinding rate decreases fast as particle size decreases. Using integraldifferential equation for the mass fraction in grinding process with experimental obtained relationships of specific breakage rate and breakage distribution parameter with particle size, grinding process of mica particles are simulated by the 4th Runge-Kutta method, and particle size distribution between simulated and measured has been compared. The comparison results show that the specific breakage rate of mica particles was proportional to grinding time.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

192-195

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.G. Austin: Size reduction of solids crushing and grinding equipment, in Handbook of Powder Science and Technology, Eds F.E. Fayed and L. Otten, Chapman & Hall, New York, (1997).

DOI: 10.1007/978-1-4615-6373-0_12

Google Scholar

[2] C. Suryanarayana: Prog. in Materials Sci. 46 (2001)1-184.

Google Scholar

[3] R. Hogg, A.J. Dynns, H. Cho: Powder Technol. 122(2002) 122-128.

Google Scholar

[4] S.S. Narayanan: Int. J. Miner. Process. 20 (1987)211-228.

Google Scholar

[5] V. R. Radhakrishnan: J. of Process Control 9(1999)195-211.

Google Scholar

[6] K. Yildirim, H. Cho, L.G. Austin: Powder Technol. 105(1999)210-221.

Google Scholar

[7] F. Deng, H. -Y. Xie, L. Wang, L.M. Zhang: J. Process Eng. 6(2006)67-70 (in Chinese).

Google Scholar

[8] H. -Y. Xie, Mechanics and Process Engineering of Powder and Particles, Chemical Industry Press, Beijing, 2003 (in Chinese).

Google Scholar

[9] L.G. Austin, V.K. Bhaha: Powder Technol. 5(1971/1972)261-266.

Google Scholar

[10] L.G. Austin, P.T. Luckie: Powder Technol. 5(1971/1972)215-222.

Google Scholar

[11] L.G. Austin: Powder Technol. 5(1971)1-17.

Google Scholar

[12] E. Teke, M. Yekeler, U. Ulusoy, M. Canbazoglu: Int. J. Miner. Process 67(2002)29-42.

Google Scholar

[13] H-Y. Xie, H. Yuan, J. Guan, A model of batch grinding of talc powders, Advanced Materials Research 250-253(2011)4016-4021.

DOI: 10.4028/www.scientific.net/amr.250-253.4016

Google Scholar

[14] C. Frances: Powder Technol. 143-144(2004)253-263.

Google Scholar

[15] F. Müller, R. Polke, M. Schäfer: Powder Technol. 105(1999)243-249.

Google Scholar

[16] H. Mori, H. Mio, J. Kano, F. Saito: Powder Technol. 143-144(2004)230-239.

Google Scholar

[17] O. Hlungwani, J. Rikhotso, H. Dong, M.H. Moys: Min. Eng. 16(2003)993-998.

Google Scholar

[18] Y. Liu, S. Spencer: Min. Eng. 17(2004)1189-1198.

Google Scholar

[19] E.P. Zemskov: Powder Technol. 102(1999)71-74.

Google Scholar

[20] L.G. Austin, C.A. Barahona, N.P. Weymont, K. Suryanarayanan: Powder Technol. 47 (1986)265-283.

DOI: 10.1016/0032-5910(86)80089-4

Google Scholar

[21] C. Tangsathitkulchai: Powder Technol. 124(2002)67-75.

Google Scholar