Al-Doped CuInSe2: An Ab Initio Study of Structural and Electronic Properties of a Photovoltaic Material

Article Preview

Abstract:

Aluminum substitution in CuInSe2 could have important implications for photovoltaic applications. To better understand the Al doping effects, we have performed density functional calculations on the CuInSe2 chalcopyrite as well as on Al-doped derivative compounds with different concentrations using the generalized gradient approximation. The structural and electronic properties of the pure and Al-doped CuInSe2 have been calculated. We find that the substitution of In by Al creates structural deformation, and the band gap of CuIn1-xAlxSe2 broadens as Al content increases. These are further discussed with the analysis of lattice parameters, bond lengths and angles, and electronic structures changes.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 512-515)

Pages:

1543-1547

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. E. Jaffe and Alex Zunger: Phys. Rev. B Vol. 29(4) (1984), p.1882

Google Scholar

[2] P. D. Paulson, M. W. Haimbodi, S. Marsillac, R. W. Birkmire, and W. N. Shafarman: J. Appl. Phys. Vol.91(12)(2002),p.10153

DOI: 10.1063/1.1476966

Google Scholar

[3] Tsuyoshi Maeda and Takahiro Wada: J. Phys. Chem. Solids Vol. 66 (2005), p. (1924)

Google Scholar

[4] Information on http://www.in-en.com/newenergy/html/newenergy-1425142535738011.html

Google Scholar

[5] J. M. Raulot, C. Domain and J. F. Guillemoles: Phys. Rev. B Vol. 71(2005), pp.035203-1

Google Scholar

[6] Y Bharath Kumar Reddy, V Sundara Raja and B Sreedhar: J. Phys. D: Appl. Phys. Vol. 39 (2006), p.5124

Google Scholar

[7] S. Wei and A. Zunger: J. Appl. Phys. Vol.78 (1995), p.3846

Google Scholar

[8] W Gębicki, M Igalsont, W Zając and R Trykozko: J. Phys. D: Appl. Phys. Vol.23 (1990), p.964

Google Scholar

[9] F. Itoh, O. Saitoh, M. Kita, H. Nagamore, and H. Oike: Sol. Energy Mater. Sol. Cells Vol.50 (1998), p.119

Google Scholar

[10] J. P. Perdew, K. Burke, and M. Ernzerhof: Phys. Rev. Lett. Vol.77 (1996), p.3865

Google Scholar

[11] G. Kresse and J. Furthmüller: Phys. Rev. B Vol.54 (1996), p.11169

Google Scholar

[12] G. Kresse and D. Joubert: Phys. Rev. B Vol.59 (1999), p.1758

Google Scholar

[13] H. J. Monkhorst and J. D. Pack: Phys. Rev. B Vol.13 (1976), p.5188

Google Scholar

[14] J. Łażewski, H. Neumann, K. Parlinski, G. Lippold, B. J. Stanbery: Phys. Rev. B Vol.68(2003), p.144108

Google Scholar

[15] H.W. Spiess, V. Haeberlen, G. Brandt, A. Raüber, and J. Schneider: Phys. Status Solidi B Vol.62 (1974), p.183

Google Scholar

[16] Johan Pohl and Karsten Albe: J. Appl. Phys. Vol.108 (2010), p.023509

Google Scholar

[17] U. P. Verma, Monika Sharma, and Per Jensen: Zeitschrift für Kristallographie Vol.226 (2011), p.814

Google Scholar