Study on the Buffer Layer of CIS Thin Film Solar Cell by Separate-Melting Chemical Bath Deposition Methods

Article Preview

Abstract:

In this work, cadmium sulphide (CdS) buffer layer of CuInSe2 (CIS) thin film solar cell is fabricated by separate-melting Chemical Bath Deposition (CBD) methods. The reason of adopting the CdS thin film as the buffer layer of CIS thin film solar cell is that the CdS can act as energy gap buffer and reduce the band-offset between CIS absorbing layer and the Transparent Conductive Oxide layer. The CdS thin films are generated by the separate-melting CBD methods in situation of atmosphere. In order to analyze the characteristics of the CdS thin films conveniently, the CdS thin films are firstly fabricated on Soda-lime, and the final found optimal CdS thin film is fabricated on the CIS/Mo/Soda-lime glasses. Then the p-n diode characteristic of the CdS/CIS/Mo/Soda-lime glasses is measured by four-point probe. And the CdS thin films are fabricated by the separate-melting CBD methods through various combinations of time interval from 40 and 60 minutes and temperature range from 70,75,80 and 85°C. It is found that the combination of 85°C and 60 minutes is optimal to obtain smoother surface and more uniform thickness of CdS thin film. Additionally from optical characteristic analysis, in situation of emitted light wave length 500 nm, the transmittance of the cadmium sulphide thin film is 61%. Meanwhile, the band gap is close to theoretical value of 2.4 eV.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 512-515)

Pages:

178-181

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Ugarte, R. Schrebler, R. Cordova, E.A. Dalchiele and H. Gomez, Thin Solid Films, 340, (1999), p.117–124.

DOI: 10.1016/s0040-6090(98)01361-3

Google Scholar

[2] K. Ramanathan, G. Teeter, J.C. Keane and R. Noufi, Thin Solid Films, 480, (2005), p.499.

DOI: 10.1016/j.tsf.2004.11.050

Google Scholar

[3] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C .L. Perkins, B. To and R. Noufi, 19.9% efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor, Prog. Photovolt. :Res. Appl.16, (2008), p.235–239.

DOI: 10.1002/pip.822

Google Scholar

[4] A. M. Ferna´ ndez and R. N. Bhattacharya, Electrodeposition of CuIn1-xGaxSe2 precursor films: optimization of film composition and morphology, Thin Solid Films, 474, (2005), p.10–13.

DOI: 10.1016/j.tsf.2004.02.104

Google Scholar

[5] R.N. Bhattacharya, W. Batchelor, J.E. Granata, F. Hasoon, H. Wiesner, K. Ramanathan, J. Keane, and R.N. Nou, Solar Energy Materials and Solar Cells, 55, (1998), p.83–94.

DOI: 10.1016/s0927-0248(98)00049-x

Google Scholar

[6] T. Nakada, K. Migita, S. Niki and A. Kunioka, Microstructural characterization for sputter-deposited CuInSe2 films and photovoltaic devices, Jpn. J. Appl. Phys. 34, (1995), p.4715–4721.

DOI: 10.1143/jjap.34.4715

Google Scholar

[7] M.K aelin, D. Rudmanna, F. Kurdesaua, T. Meyer, H. Zogga and A. N. Tiwari, CIS and CIGS layers from selenized nanoparticle precursors, Thin Solid Films, 431–432, (2003), p.58–62.

DOI: 10.1016/s0040-6090(03)00194-9

Google Scholar

[8] A. M. Gabor, J. R. Tuttle, D. S. Albin, M. A. Contreras and R. Noufi, High efficiency CuInxGa1-xSe2 solar cells made from(Inx, Ga1-x)2Se3 precursor films, Appl. Phys. Lett.,65(2), (1994), p.198–200.

DOI: 10.1063/1.112670

Google Scholar

[9] S. Shirakawa, Y. Kannnaka, H. Hasegawa, T. Kariya and S. Isomura, Properties of Cu(In,Ga)Se2 thin films prepared by chemical spray pyrolysis, Jpn. J. Appl. Phys., 38, (1999), p.4997–5002.

DOI: 10.1143/jjap.38.4997

Google Scholar

[10] M. Kaelin, D. Rudmann, F. Kurdesau, H. Zogg, T. Meyer and A.N. Tiwari, Thin Solid Films, 480–481, (2005), p.486–490.

DOI: 10.1016/j.tsf.2004.11.007

Google Scholar

[11] V.K. Kapur, A. Bansal, P. Le and O.I. Asensio, Thin Solid Films, 431–432, (2003), p.53–57.

Google Scholar