Improvement of CO2 Separation Performance by Blended Aqueous Solutions of DEA+AMP in Hollow Fiber Membrane Contactor (HFMC)

Article Preview

Abstract:

Absorption of carbon dioxide (CO2) by blended diethanolamine (DEA) + 2-amino-2- methyl-1-propanol (AMP) and single DEA solvents were compared using hollow fiber membrane contactor (HFMC). Experimental results showed AMP additive has positive influence to improve CO2 absorption flux and the optimum AMP/DEA mass concentration ratio is between 0.2 and 0.4. Decreasing gas liquid ratio could greatly promote CO2 absorption, and operating temperature has weak effect on CO2 flux. Besides, large CO2 flux can be achieved with high concentration of DEA+0.2AMP solution due to the decrease of liquid phase resistance to mass transfer, but the optimal DEA concentration was recommended to be about 15% for DEA+0.2AMP solution considering the costs of amines in HFMC.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 512-515)

Pages:

2308-2316

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Herzog, B. Eliasson and O. Kaarstad: Sci. Am. Vol. 282 (2000), p.72

Google Scholar

[2] C.S. Tan and J.E. Chen: Sep. Purif. Technol. Vol. 49 (2006), p.174

Google Scholar

[3] G.T. Rocelle: Science Vol. 325 (2009), p.1652

Google Scholar

[4] A. Gabelman and S.T. Hwang: J. Membr. Sci. Vol. 159 (1999), p.61

Google Scholar

[5] S.H. Yeon, K.S. Lee, B. Sea, Y.I. Park and K.H. Lee: J. Membr. Sci. Vol. 257 (1999), p.156

Google Scholar

[6] Y.S. Kim and S.M. Yang: Sep. Purif. Technol. Vol. 21 (2000), p.101

Google Scholar

[7] H.Y. Zhang, R. Wang, D.T. Liang and J.H. Tay: J. Membr. Sci. Vol. 279 (2006), p.301

Google Scholar

[8] S.P. Yan, M.X. Fang, W.F. Zhang, S.Y. Wang, Z.K. Xu, Z.Y. Luo, and K.F. Cen: Fuel Process. Technol. Vol. 88 (2007), p.501

Google Scholar

[9] S. Eslami, S.M. Mousavi, S. Danesh and H. Banazadeh: Adv. Eng. Softw. Vol. 42 (2011), p.612

Google Scholar

[10] Y. Gong, Z. Wang and S. Wang: Chemical Engineering and Processing Vol. 45 (2006), p.652

Google Scholar

[11] S. Paul, A.K. Ghoshal and B. Mandal: Ind. Eng. Chem. Res. Vol. 46 (2007), p.2576

Google Scholar

[12] M. Caplow: J. Am. Chem. Soc. Vol. 90 (1968), p.6795

Google Scholar

[13] A.K. Saha, S.S. Bandyopadhyay and A.K. Biswas: Chem. Eng. Sci. Vol. 50 (1995), p.3587

Google Scholar

[14] A.H. Ali: Int. J. Chem. Kinet. Vol. 37 (2005), p.391

Google Scholar

[15] H. Kreulen, C.A. Smolders, G.F. Versteeg, and W.P.M. van Swaaij: J. Memb. Sci. Vol. 78 (1993), p.217

Google Scholar

[16] M.A. Lévêque: Annales des mines Vol. 13 (1928), p.201

Google Scholar

[17] M. Mavroudi, S.P. Kaldis and G.P. Sakellaropoulos: J. Membr. Sci. 272 (2006), p.103

Google Scholar