[1]
A.P. Zeng, H. Biebl. Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Adv Biochem Eng Biotechnol. 2002, 74: 239-259.
DOI: 10.1007/3-540-45736-4_11
Google Scholar
[2]
A. Reimann, H. Biebl, W.D. Deckwer. Production of 1,3-propanediol by Clostridium butyricum in continuous culture with cell recycling. Appl Microbiol Biotechnol 1998;49:359–363.
DOI: 10.1007/s002530051182
Google Scholar
[3]
M.G. El-Ziney, N. Arneborg, M. Uyttendaele, J. Debevere, M. Jakobsen. Characterization of growth and metabolite production of Lactobacillus reuteri during glucose/glycerol cofermentation in batch and continuous cultures. Biotechnol Lett 1998;20: 913–916.
DOI: 10.1023/a:1005434316757
Google Scholar
[4]
H. Biebl. Glycerol fermentation to 1,3-propanediol by Clostridium butyricum. Measurement of product inhibition by use of a pH-auxostat. Appl Microbiol Biotechnol 1991;35:701–705.
DOI: 10.1007/bf00169880
Google Scholar
[5]
K. Menzel, A.P. Zeng, W.D. Deckwer. High concentration and productivity of 1,3-propanediol from continuous fermentation of glycrol by Klebsiella pneumoniae. Enzyme Microbiol Technol. 1997;20: 82-86.
DOI: 10.1016/s0141-0229(96)00087-7
Google Scholar
[6]
K. Menzel, K. Ahrens, A.P. Zeng, W.D. Deckwer. Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture. IV: Enzymes and fluxes of pyruvate metabolism. Biotechnol Bioeng 1998;60: 617–626.
DOI: 10.1002/(sici)1097-0290(19981205)60:5<617::aid-bit12>3.0.co;2-l
Google Scholar
[7]
H. Huang, C.S. Gong, G.T. Tsao. Production of 1,3-propanediol by Klebsiella pneumoniae. Appl Biochem Biotechnol 2002;98:687–698.
DOI: 10.1007/978-1-4612-0119-9_56
Google Scholar
[8]
Z. Chen, H.J. Liu, J.A. Zhang, D.H. Liu. Cell physiology and metabolic flux response of Klebsiella pneumoniae to aerobic conditions. Process Biochemistry 2009,44(8): 862-868.
DOI: 10.1016/j.procbio.2009.04.004
Google Scholar
[9]
K.K. Cheng, H.J. Liu, D.H. Liu. Multiple growth inhibition of Klebsiella pneumoniae in 1,3-propanediol fermentation. Biotechnol Lett. 2005; 27:19–22.
DOI: 10.1007/s10529-004-6308-8
Google Scholar
[10]
Y. Gong, Yu. Tang, X.L. Wang, L.X. Yu, D.H. Liu. The possibility of the desalination of actual 1,3-propanediol fermentation broth by electrodialysis. Desalination 2004,16 (1): 169-l 78.
DOI: 10.1016/s0011-9164(04)90052-5
Google Scholar
[11]
E.M. Tarmy, N.O. Kaplan, Chemical characterization of D-lactate dehydrogenase from Escherichia coli B. J. Biol. Chem. 1968;243:2579-2586.
DOI: 10.1016/s0021-9258(18)93413-7
Google Scholar
[12]
N.D. Haugaard, D- and L-lactic acid oxidases of Escherichia coli. Biochim. Biophys. Acta 1959;31:66-77.
Google Scholar
[13]
E. S. Kline, E. R. Mahler. The lactic acid dehydrogenases of Escherichia coli. Ann. N.Y. Acad. Sci. 1965;119:905-917.
Google Scholar
[14]
L. F. Shaw, H. R.Grau, J. Kaback, S. Hong, and C.Walsh, Vinylglycolate resistance in Escherichia coli. J. Bacteriol. 1975;121:1047-1055.
DOI: 10.1128/jb.121.3.1047-1055.1975
Google Scholar
[15]
E. M. Tarmy, and N. O. Kaplan. Interacting binding sites of L-specific lactic dehydrogenase of Escherichia coli. Biochem.Biophys. Res. Commun. 1965;21:379-383, 28.
DOI: 10.1016/0006-291x(65)90205-6
Google Scholar
[16]
E. M., Tarmy, and N.O. Kaplan. Kinetics of Escherichia coli B D-lactate dehydrogenase and evidence for pyruvate controlled change in conformation. J. Biol. Chem. 1968;243:2587- 2532.
DOI: 10.1016/s0021-9258(18)93414-9
Google Scholar
[17]
D. P.Clark, Fermentation pathways of Escherichia coli. FEMS Microbiol Rev.1989;63, 223-234.
Google Scholar
[18]
J. Hao, R.H Lin, Z.M. Zheng, H.J. Liu, D. H. Liu. Isolation and characterization of microorganisms able to produce 1,3-propanediol under aerobic conditions World J Micro Biotechnol. 2008,24(9):1731-1740.
DOI: 10.1007/s11274-008-9665-y
Google Scholar
[19]
Y.Z. Xu, N.N. Guo, Z.M. Zheng, X.J. Ou, H.J. Liu, D.H. Liu. Metabolism in 1,3-Propanediol Fed-Batch Fermentation by a D-Lactate Deficient Mutant of Klebsiella pneumoniae. Biotechnol Bioeng. 2009,104(5):965-972.
DOI: 10.1002/bit.22455
Google Scholar
[20]
D.H. Zhao, J.L. Li. Construction and characterization of double mutants in nitrogenase of Klebsiella pneumoniae. Chin Sci Bull. 2004;49:1707–1713.
DOI: 10.1007/bf03184303
Google Scholar
[21]
Z.M. Zheng, K.K. Cheng, Q.L Hu. Effect of culture conditions on 3-hydroxypropionaldehyde detoxification in 1, 3-propanediol fermentation by Klebsiella pneumoniae. Biochem Eng J 2008; 39:305-310.
DOI: 10.1016/j.bej.2007.10.001
Google Scholar
[22]
H.J. Liu, D.H. Liu, J.J. Zhong. Oxygen limitation improves glycerol production by Candida krusei in a bioreactor. Process Biochem 2004;39:1899-1902.
DOI: 10.1016/j.procbio.2003.09.017
Google Scholar
[23]
S.J. Circle, L. Stone, C.S. Boruff. Acrolein determination by means of tryptophane. Ind Eng Chem 1945;17:259–262
DOI: 10.1021/i560140a021
Google Scholar
[24]
Y. Mu, H. Teng, D-J. Zhang, W. Wang, Z-L. Xiu, Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparation, Biotechnol. Lett. 2006, 28, 1755-1759.
DOI: 10.1007/s10529-006-9154-z
Google Scholar
[25]
SA Jun, C Moon, CH Kang, SW Kong; BI Sang; Y Um. Microbial Fed-batch Production of 1,3-Propanediol Using Raw Glycerol with Suspended and Immobilized Klebsiella pneumoniae. Appl. Biochem. Biotechnol.2010,161(1-8):491-501.
DOI: 10.1007/s12010-009-8839-x
Google Scholar