1,3-Propanediol Fermentation with the by-Product Glycerol from Biodiesel Production by a Genetic Modified Klebsiella pneumoniae

Article Preview

Abstract:

Nowadays, the utilization of the by-product glycerol has become a common problem with the large amount of biodiesel production. This paper studied the conversion of the by-product glycerol of biodiesel production by Klebsiella pneumonia to 1,3-propanediol. The crude glycerol could be used directly without refining by a lactate dehydrogenase deficient K. pneumoniae and the lactic acid concentration was very low. In the fed-batch fermentation of 7L fermenter, 93.3g/l 1,3-propanediol was obtained and lactic acid concentration was just 2g/l. Analysis showed that D-type lactic acid synthesis was reduced obviously. The fermentation also was scaled up on the 42L fermenter. 1,3-propanediol and 2,3-Butanediol concentration reached 81.5g/l and 33.8g/l, respectively. No lactic acid was detected. The demonstration fermentation in 5000L fermenter was also successfully performed. The final 1,3-propanediol concentration and productivity was 87g/l and 1.2g/(lh). This work was considered useful to the integrated production of biodiesel and 1,3-propanediol.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 512-515)

Pages:

323-329

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.P. Zeng, H. Biebl. Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Adv Biochem Eng Biotechnol. 2002, 74: 239-259.

DOI: 10.1007/3-540-45736-4_11

Google Scholar

[2] A. Reimann, H. Biebl, W.D. Deckwer. Production of 1,3-propanediol by Clostridium butyricum in continuous culture with cell recycling. Appl Microbiol Biotechnol 1998;49:359–363.

DOI: 10.1007/s002530051182

Google Scholar

[3] M.G. El-Ziney, N. Arneborg, M. Uyttendaele, J. Debevere, M. Jakobsen. Characterization of growth and metabolite production of Lactobacillus reuteri during glucose/glycerol cofermentation in batch and continuous cultures. Biotechnol Lett 1998;20: 913–916.

DOI: 10.1023/a:1005434316757

Google Scholar

[4] H. Biebl. Glycerol fermentation to 1,3-propanediol by Clostridium butyricum. Measurement of product inhibition by use of a pH-auxostat. Appl Microbiol Biotechnol 1991;35:701–705.

DOI: 10.1007/bf00169880

Google Scholar

[5] K. Menzel, A.P. Zeng, W.D. Deckwer. High concentration and productivity of 1,3-propanediol from continuous fermentation of glycrol by Klebsiella pneumoniae. Enzyme Microbiol Technol. 1997;20: 82-86.

DOI: 10.1016/s0141-0229(96)00087-7

Google Scholar

[6] K. Menzel, K. Ahrens, A.P. Zeng, W.D. Deckwer. Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture. IV: Enzymes and fluxes of pyruvate metabolism. Biotechnol Bioeng 1998;60: 617–626.

DOI: 10.1002/(sici)1097-0290(19981205)60:5<617::aid-bit12>3.0.co;2-l

Google Scholar

[7] H. Huang, C.S. Gong, G.T. Tsao. Production of 1,3-propanediol by Klebsiella pneumoniae. Appl Biochem Biotechnol 2002;98:687–698.

DOI: 10.1007/978-1-4612-0119-9_56

Google Scholar

[8] Z. Chen, H.J. Liu, J.A. Zhang, D.H. Liu. Cell physiology and metabolic flux response of Klebsiella pneumoniae to aerobic conditions. Process Biochemistry 2009,44(8): 862-868.

DOI: 10.1016/j.procbio.2009.04.004

Google Scholar

[9] K.K. Cheng, H.J. Liu, D.H. Liu. Multiple growth inhibition of Klebsiella pneumoniae in 1,3-propanediol fermentation. Biotechnol Lett. 2005; 27:19–22.

DOI: 10.1007/s10529-004-6308-8

Google Scholar

[10] Y. Gong, Yu. Tang, X.L. Wang, L.X. Yu, D.H. Liu. The possibility of the desalination of actual 1,3-propanediol fermentation broth by electrodialysis. Desalination 2004,16 (1): 169-l 78.

DOI: 10.1016/s0011-9164(04)90052-5

Google Scholar

[11] E.M. Tarmy, N.O. Kaplan, Chemical characterization of D-lactate dehydrogenase from Escherichia coli B. J. Biol. Chem. 1968;243:2579-2586.

DOI: 10.1016/s0021-9258(18)93413-7

Google Scholar

[12] N.D. Haugaard, D- and L-lactic acid oxidases of Escherichia coli. Biochim. Biophys. Acta 1959;31:66-77.

Google Scholar

[13] E. S. Kline, E. R. Mahler. The lactic acid dehydrogenases of Escherichia coli. Ann. N.Y. Acad. Sci. 1965;119:905-917.

Google Scholar

[14] L. F. Shaw, H. R.Grau, J. Kaback, S. Hong, and C.Walsh, Vinylglycolate resistance in Escherichia coli. J. Bacteriol. 1975;121:1047-1055.

DOI: 10.1128/jb.121.3.1047-1055.1975

Google Scholar

[15] E. M. Tarmy, and N. O. Kaplan. Interacting binding sites of L-specific lactic dehydrogenase of Escherichia coli. Biochem.Biophys. Res. Commun. 1965;21:379-383, 28.

DOI: 10.1016/0006-291x(65)90205-6

Google Scholar

[16] E. M., Tarmy, and N.O. Kaplan. Kinetics of Escherichia coli B D-lactate dehydrogenase and evidence for pyruvate controlled change in conformation. J. Biol. Chem. 1968;243:2587- 2532.

DOI: 10.1016/s0021-9258(18)93414-9

Google Scholar

[17] D. P.Clark, Fermentation pathways of Escherichia coli. FEMS Microbiol Rev.1989;63, 223-234.

Google Scholar

[18] J. Hao, R.H Lin, Z.M. Zheng, H.J. Liu, D. H. Liu. Isolation and characterization of microorganisms able to produce 1,3-propanediol under aerobic conditions World J Micro Biotechnol. 2008,24(9):1731-1740.

DOI: 10.1007/s11274-008-9665-y

Google Scholar

[19] Y.Z. Xu, N.N. Guo, Z.M. Zheng, X.J. Ou, H.J. Liu, D.H. Liu. Metabolism in 1,3-Propanediol Fed-Batch Fermentation by a D-Lactate Deficient Mutant of Klebsiella pneumoniae. Biotechnol Bioeng. 2009,104(5):965-972.

DOI: 10.1002/bit.22455

Google Scholar

[20] D.H. Zhao, J.L. Li. Construction and characterization of double mutants in nitrogenase of Klebsiella pneumoniae. Chin Sci Bull. 2004;49:1707–1713.

DOI: 10.1007/bf03184303

Google Scholar

[21] Z.M. Zheng, K.K. Cheng, Q.L Hu. Effect of culture conditions on 3-hydroxypropionaldehyde detoxification in 1, 3-propanediol fermentation by Klebsiella pneumoniae. Biochem Eng J 2008; 39:305-310.

DOI: 10.1016/j.bej.2007.10.001

Google Scholar

[22] H.J. Liu, D.H. Liu, J.J. Zhong. Oxygen limitation improves glycerol production by Candida krusei in a bioreactor. Process Biochem 2004;39:1899-1902.

DOI: 10.1016/j.procbio.2003.09.017

Google Scholar

[23] S.J. Circle, L. Stone, C.S. Boruff. Acrolein determination by means of tryptophane. Ind Eng Chem 1945;17:259–262

DOI: 10.1021/i560140a021

Google Scholar

[24] Y. Mu, H. Teng, D-J. Zhang, W. Wang, Z-L. Xiu, Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparation, Biotechnol. Lett. 2006, 28, 1755-1759.

DOI: 10.1007/s10529-006-9154-z

Google Scholar

[25] SA Jun, C Moon, CH Kang, SW Kong; BI Sang; Y Um. Microbial Fed-batch Production of 1,3-Propanediol Using Raw Glycerol with Suspended and Immobilized Klebsiella pneumoniae. Appl. Biochem. Biotechnol.2010,161(1-8):491-501.

DOI: 10.1007/s12010-009-8839-x

Google Scholar