[1]
G. Arfken. Mathematical Methods for Physics, Academic Press, New York, (1997)
Google Scholar
[2]
Quarteroni and A. Valli, Numerical approximation of partial differential equations, Springer-Verlag, Berlin, 1994.
Google Scholar
[3]
Z.H. Yao, and Q.H.Du, Some aspects of the BEM research in China, Electronic Journal of Boundary Elements, vol. 1, pp.61-67, (2003)
Google Scholar
[4]
L.C. Wrobel. The Boundary Element Method, Wiley NY, USA, (2002)
Google Scholar
[5]
P. K. Bannerjee and R. Butterfield, Boundary Element Method in Engineering Science, McGraw-Hill, UK, (1981)
Google Scholar
[6]
Q. H. Qin. The Trefftz finite and boundary element method, WIT Press, UK, (2000)
Google Scholar
[7]
Herrera. Trefftz Method: A General Theory, Numerical Methods for Partial Differential Equations, vol.16, p.561–58, (2000)
DOI: 10.1002/1098-2426(200011)16:6<561::aid-num4>3.0.co;2-v
Google Scholar
[8]
W. G. Jin and Y. K. Cheung,Trefftz direct method. Advances in Engineering Software, vol.24, pp.65-69, (1995)
DOI: 10.1016/0965-9978(95)00059-3
Google Scholar
[9]
I. Herrera, R. Yates, and M. Diaz. General Theory of domain decomposition: Indirect method, Numerical Methods for Partial Differential Equations, vol.18, pp.296-322, (2002)
DOI: 10.1002/num.10008
Google Scholar
[10]
E. Kita, and N. Kamiya, Trefftz method: an overview, Advances in Engineering Software, vol.24, pp.3-12, (1995)
DOI: 10.1016/0965-9978(95)00067-4
Google Scholar
[11]
S.C. Huang, and R.P. Shaw. The Trefftz method as an integral equation, Advances in Engineering Software, vol.24, pp.57-63, (1995)
DOI: 10.1016/0965-9978(95)00058-5
Google Scholar
[12]
E. Kita, N. Kamiya, and Y. Ikeda, Application of a direct Trefftz method with domain 2D Potential problems, Eng Anal Bound Elem, vol.23, pp.539-548,(1999)
DOI: 10.1016/s0955-7997(99)00010-7
Google Scholar
[13]
Y. K. Cheung, W. G. Jin, and O. C. Zienkiewicz, Solution of Helmholtz Equation by Trefftz Method, International Journal for Numerical Methods in Engineering, vol.32, p.63–78,(1991)
DOI: 10.1002/nme.1620320105
Google Scholar
[14]
W. G. Jin, Y. K. Cheung, and O. C. Zienkiewicz, Trefftz method for Kirchhoff plate Bending problems, International Journal for Numerical Methods in Engineering, vol.36, pp.765-781, (1993)
DOI: 10.1002/nme.1620360504
Google Scholar
[15]
C.Y. Dong, S.H. Lo, and Y.K. Cheung, Anisotropic thin plate bending problems by Trefftz boundary collocation method, Engineering Analysis with Boundary Elements, vol.28, pp.1017-1024, (2004)
DOI: 10.1016/j.enganabound.2004.02.008
Google Scholar
[16]
J .R .Chang, R. F. Liu, and Wyeth, Applications of the direct Trefftz boundary element method to the free-vibration problem of a membrane. Journal of the Acoustical Society of America, vol.112, pp.518-527, (2002)
DOI: 10.1121/1.1494992
Google Scholar
[17]
K. Y. Se, W. G. Jin, and N. Sheng, Trefftz methods for plane piezoelectricity. Computer Assisted Mechanics and Engineering Science, vol.10, pp.375-383, (2003)
Google Scholar
[18]
J. Sladek, V. Sladek, and R.vanKeer, Global and local Trefftz boundary integral formulation for sound vibration, Adv Eng Softw, vol.33, p.469–476, (2002)
DOI: 10.1016/s0965-9978(02)00050-9
Google Scholar
[19]
J. S. Domingues, A. Portela, and P. M. S. T. de Castro, Trefftz boundary element method applied to fracture mechanics, Eng Fract Mech , vol.64, p.67–85 ,(1999)
DOI: 10.1016/s0013-7944(99)00062-4
Google Scholar
[20]
M.S. Abou-Dina, Implementation of Trefftz method for the solution of some elliptic boundary value problems, Apply Math Computer, vol.127, p.125–147, (2002)
DOI: 10.1016/s0096-3003(01)00063-7
Google Scholar
[21]
I.Herrera, R.Yates, and E.Rubio. Collocation methods: More efficient procedures for applying collocation. Advances in Engineering Software, vol.38, pp.657-667, (2007)
DOI: 10.1016/j.advengsoft.2006.10.010
Google Scholar
[22]
G. Burgess, and E. Mahajerin, Transient heat flow analysis using the fundamental collocation method, Applied Thermal Engineering, vol.23, pp.893-904, (2003)
DOI: 10.1016/s1359-4311(03)00026-7
Google Scholar
[23]
E. Mahajerin, and G. Burgess. A Laplace transform-based fundamental collocation method for two-dimensional transient heat flow, Applied Thermal Engineering, vol.23, pp.101-111, (2003)
DOI: 10.1016/s1359-4311(02)00138-2
Google Scholar
[24]
P.A. Ramachandran, and P.R. Gunjal, Comparison of boundary collocation methods for singular and non-singular ax symmetric heat transfer problems, Engineering Analysis with Boundary Elements, vol.33, pp.704-716, (2009)
DOI: 10.1016/j.enganabound.2008.09.010
Google Scholar
[25]
M.A. Fortini, and N. M. Stamoulis, Application of the orthogonal collocation method to determination of temperature distribution in cylindrical conductors. Analysis of Nuclear Energy, vol.35, pp.1681-1685, (2008)
DOI: 10.1016/j.anucene.2008.02.006
Google Scholar
[26]
Y. Liu, Z.H. He, and H.M. Fan, Scattering of SH-waves by an interface cavity, Acta Mechanica, vol.170, pp.47-56, (2004)
DOI: 10.1007/s00707-004-0098-x
Google Scholar
[27]
H. M. Fan, Y. Jiang, and Z.Y. He, Thermal analysis of a straight buried pipe. Journal of Tsinghua University (Science and Technology) (in Chinese), vol.42, pp.806-809, (2002)
Google Scholar