Collocation Trefftz Method for the Heat Conduction Issue in Irregular Domain with Non-Linear Boundary Condition

Article Preview

Abstract:

Rules for nonlinear borders of irregular domain is the thorny issues when using analytical method for solving mathematical and physical equations. On the basis of solution in the form of separated variables, the border of arbitrary shape with non-orthogonal boundary will be separated into a limited number of discrete points, and then direct assignment for the form solution at each of the discrete points on the border according to boundary conditions, at every discrete points on the border can establish an equation. If the number of discrete points on the border is equal with truncated series after retained series, all coefficients of the form solution can be determined and the problem solved. This paper use Laplace equation as an example to illustrate Collocation Trefftz Method can solve certain steady heat conduction problems within irregular domain with non-linear border.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 516-517)

Pages:

156-164

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Arfken. Mathematical Methods for Physics, Academic Press, New York, (1997)

Google Scholar

[2] Quarteroni and A. Valli, Numerical approximation of partial differential equations, Springer-Verlag, Berlin, 1994.

Google Scholar

[3] Z.H. Yao, and Q.H.Du, Some aspects of the BEM research in China, Electronic Journal of Boundary Elements, vol. 1, pp.61-67, (2003)

Google Scholar

[4] L.C. Wrobel. The Boundary Element Method, Wiley NY, USA, (2002)

Google Scholar

[5] P. K. Bannerjee and R. Butterfield, Boundary Element Method in Engineering Science, McGraw-Hill, UK, (1981)

Google Scholar

[6] Q. H. Qin. The Trefftz finite and boundary element method, WIT Press, UK, (2000)

Google Scholar

[7] Herrera. Trefftz Method: A General Theory, Numerical Methods for Partial Differential Equations, vol.16, p.561–58, (2000)

DOI: 10.1002/1098-2426(200011)16:6<561::aid-num4>3.0.co;2-v

Google Scholar

[8] W. G. Jin and Y. K. Cheung,Trefftz direct method. Advances in Engineering Software, vol.24, pp.65-69, (1995)

DOI: 10.1016/0965-9978(95)00059-3

Google Scholar

[9] I. Herrera, R. Yates, and M. Diaz. General Theory of domain decomposition: Indirect method, Numerical Methods for Partial Differential Equations, vol.18, pp.296-322, (2002)

DOI: 10.1002/num.10008

Google Scholar

[10] E. Kita, and N. Kamiya, Trefftz method: an overview, Advances in Engineering Software, vol.24, pp.3-12, (1995)

DOI: 10.1016/0965-9978(95)00067-4

Google Scholar

[11] S.C. Huang, and R.P. Shaw. The Trefftz method as an integral equation, Advances in Engineering Software, vol.24, pp.57-63, (1995)

DOI: 10.1016/0965-9978(95)00058-5

Google Scholar

[12] E. Kita, N. Kamiya, and Y. Ikeda, Application of a direct Trefftz method with domain 2D Potential problems, Eng Anal Bound Elem, vol.23, pp.539-548,(1999)

DOI: 10.1016/s0955-7997(99)00010-7

Google Scholar

[13] Y. K. Cheung, W. G. Jin, and O. C. Zienkiewicz, Solution of Helmholtz Equation by Trefftz Method, International Journal for Numerical Methods in Engineering, vol.32, p.63–78,(1991)

DOI: 10.1002/nme.1620320105

Google Scholar

[14] W. G. Jin, Y. K. Cheung, and O. C. Zienkiewicz, Trefftz method for Kirchhoff plate Bending problems, International Journal for Numerical Methods in Engineering, vol.36, pp.765-781, (1993)

DOI: 10.1002/nme.1620360504

Google Scholar

[15] C.Y. Dong, S.H. Lo, and Y.K. Cheung, Anisotropic thin plate bending problems by Trefftz boundary collocation method, Engineering Analysis with Boundary Elements, vol.28, pp.1017-1024, (2004)

DOI: 10.1016/j.enganabound.2004.02.008

Google Scholar

[16] J .R .Chang, R. F. Liu, and Wyeth, Applications of the direct Trefftz boundary element method to the free-vibration problem of a membrane. Journal of the Acoustical Society of America, vol.112, pp.518-527, (2002)

DOI: 10.1121/1.1494992

Google Scholar

[17] K. Y. Se, W. G. Jin, and N. Sheng, Trefftz methods for plane piezoelectricity. Computer Assisted Mechanics and Engineering Science, vol.10, pp.375-383, (2003)

Google Scholar

[18] J. Sladek, V. Sladek, and R.vanKeer, Global and local Trefftz boundary integral formulation for sound vibration, Adv Eng Softw, vol.33, p.469–476, (2002)

DOI: 10.1016/s0965-9978(02)00050-9

Google Scholar

[19] J. S. Domingues, A. Portela, and P. M. S. T. de Castro, Trefftz boundary element method applied to fracture mechanics, Eng Fract Mech , vol.64, p.67–85 ,(1999)

DOI: 10.1016/s0013-7944(99)00062-4

Google Scholar

[20] M.S. Abou-Dina, Implementation of Trefftz method for the solution of some elliptic boundary value problems, Apply Math Computer, vol.127, p.125–147, (2002)

DOI: 10.1016/s0096-3003(01)00063-7

Google Scholar

[21] I.Herrera, R.Yates, and E.Rubio. Collocation methods: More efficient procedures for applying collocation. Advances in Engineering Software, vol.38, pp.657-667, (2007)

DOI: 10.1016/j.advengsoft.2006.10.010

Google Scholar

[22] G. Burgess, and E. Mahajerin, Transient heat flow analysis using the fundamental collocation method, Applied Thermal Engineering, vol.23, pp.893-904, (2003)

DOI: 10.1016/s1359-4311(03)00026-7

Google Scholar

[23] E. Mahajerin, and G. Burgess. A Laplace transform-based fundamental collocation method for two-dimensional transient heat flow, Applied Thermal Engineering, vol.23, pp.101-111, (2003)

DOI: 10.1016/s1359-4311(02)00138-2

Google Scholar

[24] P.A. Ramachandran, and P.R. Gunjal, Comparison of boundary collocation methods for singular and non-singular ax symmetric heat transfer problems, Engineering Analysis with Boundary Elements, vol.33, pp.704-716, (2009)

DOI: 10.1016/j.enganabound.2008.09.010

Google Scholar

[25] M.A. Fortini, and N. M. Stamoulis, Application of the orthogonal collocation method to determination of temperature distribution in cylindrical conductors. Analysis of Nuclear Energy, vol.35, pp.1681-1685, (2008)

DOI: 10.1016/j.anucene.2008.02.006

Google Scholar

[26] Y. Liu, Z.H. He, and H.M. Fan, Scattering of SH-waves by an interface cavity, Acta Mechanica, vol.170, pp.47-56, (2004)

DOI: 10.1007/s00707-004-0098-x

Google Scholar

[27] H. M. Fan, Y. Jiang, and Z.Y. He, Thermal analysis of a straight buried pipe. Journal of Tsinghua University (Science and Technology) (in Chinese), vol.42, pp.806-809, (2002)

Google Scholar