Numerical Simulation of Infrared Signature Emitted by Liquid Rocket Plume Using Wide Band K-Distribution Model

Article Preview

Abstract:

A new wide band k-distribution model has been developed and used to investigate infrared radiation signatures of liquid rocket plume in some detectors’ working spectrum regions, in which the temperature and the gas molar concentration fields are solved using engineering empirical formulations. Based on the line parameters in HITEMP database, absorption coefficient variables of water vapor and carbon dioxide corresponding to 12-point Gauss-Lobatto quadrature points are derived and expressed as a simple formulation. The absorption coefficient variables of mixture are obtained by summing the absorption coefficient variables of individual gas species under the hypothesis that the k-distributions are statistically uncorrelated. Its validity for the numerical prediction of liquid rocket plume radiation is verified by comparison with line-by-line approach (LBL). Compared with line-by-line calculations, the maximum relative errors of the new band model are less than 10 % in the detectors’ working spectrum regions, while the computational time of the new band model is less than 1/1000 of LBL. The effects of fly parameter on infrared radiation signatures of liquid rocket plume are studied using the new model. The results showed that the integral radiation intensities of liquid rocket plume increase with the nozzle exit temperature, Mach number and the ratio of nozzle exit pressure to atmospheric pressure. The radiation intensity variation trend for liquid rocket plume with altitude is different for different detectors’ working spectrum regions.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 516-517)

Pages:

41-53

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Simmons F. S. Rocket Exhaust Plume Phenomenology. California: The Aerospace Press, (2000)

Google Scholar

[2] Châteauneuf M. and Dubois J. VIS and NIR signature acquisition system for rocket plumes. Electro-Optical and Infrared Systems: Technology and Applications II, edited by Ronald G. Driggers, David A. Huckridge, Proceedings of SPIE 2005;5987(S):1-9

DOI: 10.1117/12.630805

Google Scholar

[3] Boischot A., Roblin A., Hespel L., Dubois I., Prevot P., Smithson T. Evaluation of computation codes for rocket plume's infrared signature by using measurements on a small scale aluminized composite propellant motor. Targets and Backgrounds XII: Characterization and Representation, edited by Wendell R. Watkins, Dieter Clement, Proceedings of SPIE 2006;6239(M):1-12

DOI: 10.1117/12.667242

Google Scholar

[4] Nelson H. F. Journal of Spacecraft and Rocket 1984;21(5):508-510

Google Scholar

[5] Avital G., Cohen, Y., Gamss, L., Kanelbaum, Y., Macales, J., Trieman, B., Yaniv, S, Lev, M., Stricker, J., Sternlieb, A. Journal of Thermophysics and Heat Transfer 2001;15(1-4): 377-383

DOI: 10.2514/2.6629

Google Scholar

[6] GASPex, Ver. 3, User's Manual, AeroSoft, Inc., Blacksburg, VA, 1997.

Google Scholar

[7] Beiting E.J. Journal of Spacecraft and Rockets 1997;34: pp.303-310

Google Scholar

[8] Cai G., Zhu D., Zhang X. Aerospace Science and Technology 2007;11(6): 473-480

Google Scholar

[9] Baek S. W. and Kim. M. Y. International Journal of Heat and Mass Transfer 1997;40( 7): 1501 1508

Google Scholar

[10] Schenker G. N. and Keller B. International Journal of Heat and Mass Transfer 1995; 38(17): 3127-3134.

Google Scholar

[11] Rothman L.S., Barbe A., Benner D.C. et al. Journal of Quantitative Spectroscopy & Radiative Transfer 2003;82(1-4): 5-44

Google Scholar

[12] Rothman L.S. Camy P.C. Flaud J.M,et al. HITEMP, the high-temperature molecular spectroscopic database 2000. Proceeding on line, <http://www. hitran. com>

Google Scholar

[13] Tashkun S.A., Perevalov V.I., Bykov A.D., Lavrentieva N.N., Teffo J.L. Carbon dioxide spectroscopic databank (CDSD) 2002, available.from: ftp://ftp.iao.ru/pub/CDSD-1000

DOI: 10.1016/s0022-4073(03)00152-3

Google Scholar

[14] Bernstein L. S., Robertson D. C. and Conant J. A. Band model parameters for the 4.3 CO2 band from 200 to 3000K—Ⅱ. Journal of Quantitative Spectroscopy & Radiative Transfer 1980;23: 169-185

DOI: 10.1016/0022-4073(80)90005-9

Google Scholar

[15] Soufiani A, Andre F, Taine J. Journal of Quantitative Spectroscopy & Radiative Transfer 2002;73: 339-347.

Google Scholar

[16] Modest M F. Radiative Heat Transfer. New York: Academic Press, 2002.

Google Scholar

[17] Marin O. Buckius R. O. International Journal of Heat and Mass Transfer 1998; 41: 3881-3897.

Google Scholar

[18] Marin O., Buckius R.O. International Journal of Heat and Mass Transfer 1998; 41: 2877-2892.

Google Scholar

[19] Marin O., Buckius R. O. Journal of Quantitative Spectroscopy & Radiative Transfer 1998; 59: 671-685.

Google Scholar

[20] He J., Cheng W. L., Buckius, R. O. International Journal of Heat and Mass Transfer 2008; 51: 1115-1129.

Google Scholar

[21] He J., Buckius R. O. International Journal of Heat and Mass Transfer 2008; 51: 1467-1474.

Google Scholar

[22] Zhao C., Jiang Y. Gas Dynamics for Gas Jet. Beijing, Beijing Institute of Technology Press, (1998)

Google Scholar

[23] Miao R. Gas Dynamics for Launch. Beijing: National Defence Industry Press, (2006)

Google Scholar

[24] Soufiani A., Taine J. International Journal of Heat and Mass Transfer 1997; 40: 987-991.

Google Scholar

[25] Liu F., Smallwood G. J., Gulder O. L. Journal of Quantitative Spectroscopy & Radiative Transfer 2001; 68: 401-417.

Google Scholar

[26] Shi G. Scientia Atmospherica Sinica 1998; 7(22): 559-674.

Google Scholar

[27] Wang W., Shi G. Journal of Quantitative Spectroscopy & Radiative Transfer 1988; 39(5): 387-397.

Google Scholar

[28] Zhang H., G Shi. Journal of Quantitative Spectroscopy & Radiative Transfer 2005; 96: 311-324.

Google Scholar

[29] Zhang H., Shi G., Nakajima T., Suzuki T. Journal of Quantitative Spectroscopy & Radiative Transfer 2006; 98: 31-43.

Google Scholar

[30] Shi G. y., Xu N., Wang B., Dai T., Zhao J. q.. Journal of Quantitative Spectroscopy & Radiative Transfer 2009; 110: 435-451.

Google Scholar

[31] Modest M. F., Zhang H. ASME J Heat Transfer 2002; 124(1): 30-38.

Google Scholar

[32] Zhang H. Radiative properties and radiative heat transfer calculations for high temperature combustion gases. Ph.D. thesis, The Pennsylvania State University, 2002.

Google Scholar

[33] Modest M. F. Journal of Quantitative Spectroscopy & Radiative Transfer 2003; 76(1): 69-83.

Google Scholar

[34] Wang A., Modest M. F. Journal of Quantitative Spectroscopy & Radiative Transfer 2005; 93(1-3):245-261.

Google Scholar

[35] Modest M F, Mehta R S. International Journal of Heat and Mass Transfer 2004; 47: 2487-2491.

Google Scholar

[36] Modest M F., Singh V. Journal of Quantitative Spectroscopy & Radiative Transfer 2005; 93: 263-271.

Google Scholar

[37] Bansal A., Modest M. F., Levin D. A. Journal of Quantitative Spectroscopy & Radiative Transfer 2011; 112: 1213-1221.

DOI: 10.1016/j.jqsrt.2010.09.012

Google Scholar

[38] Wang M., Tang B. Journal of Institute of Command and Technology 2001; 12(6): 104-107, in Chinese

Google Scholar

[39] Liou. K. N. An Introduction to Atmospheric Radiation. New York: Academic Press, 2002.

Google Scholar

[40] Tian G. Thermal Remote Sensing. Beijing: Electronic Industry Press, 2006, in Chinese

Google Scholar

[41] Gong H. Developments and trends in spaceborne infrared detectors. Proceedings of infrared detector and it's application in the system, Shanghai, 2007: 27-37, in Chinese

Google Scholar

[42] Zhang F. Gas Dynamics for Rocket Gas Jet. Harbin: Harbin Engineering University Press, 2004, in Chinese

Google Scholar

[43] Shi G. Atmospheric Radiation. Beijing: Science Press, 2007, in Chinese

Google Scholar