Comparison and Analyses of Existing Objective, Quantificational Blocking Indices

Article Preview

Abstract:

There are existing objective, quantitative blocking indices that could be classified into five types: the departure method, the Tibaldi and Molteni(TM) method, the dynamical index(PV-θindex), the dynamical potential vorticity (PV) based index, and the circumfluent type method. Persistent blocking highs can be associated with destructive weather including low temperatures, snowfall, and anomalous freezing from January 1st to February 2nd 2008 in China. Using the daily reanalysis data provided by NCEP/NCAR, the merits and flaws of these five objective methods are studied individually, including the intensity、size and frequency of block. Generally speaking, each method has both advantages and clearly identifiable limitations because of the mathematical formulation for each objective blocking index. Based on the merits and flaws of these blocking indices summarized in this study, investigators and operational meteorologists could apply these blocking indices better if they can select an index compatible with their study objectives, or improve upon and innovate a new method.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 518-523)

Pages:

1282-1288

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Rex D .1950a. Blocking action in the middle troposphere and its effect upon regional climateⅠ. Tellus 2, 196-211.

DOI: 10.1111/j.2153-3490.1950.tb00331.x

Google Scholar

[2] Rex D. 1950b. Blocking action in the middle troposphere and its effect upon regional climate Ⅱ: The climatology of blocking action. Tellus 2, 275-301.

DOI: 10.3402/tellusa.v2i4.8603

Google Scholar

[3] Nakamura, H., J. M. Wallace. 1990. Observed changes in baroclinic wave activity during the life cycles of low-frequency circulation anomalies. J. Atmos. Sci. 47, 1100–1116.

DOI: 10.1175/1520-0469(1990)047<1100:ocibwa>2.0.co;2

Google Scholar

[4] Schwierz C, Croci-Maspoli M, Davies HC. 2004. Perspicacious indicators of atmospheric blocking. Geophys Res Lett 31, 6125-6128.

DOI: 10.1029/2003gl019341

Google Scholar

[5] Quiroz, R.S. 1984. The climate of the 1983-1984 winter: A season of strong blocking and severe cold in North America. Mon. Wea. Rev. 112, 1894-1912.

DOI: 10.1175/1520-0493(1984)112<1894:tcotws>2.0.co;2

Google Scholar

[6] Lin X.C., Zhang X.Q. 2000. Characteristics of the circulation during the catastrophic flood period over China in 1998. Chinese journal of geophysics 43,607-615.

DOI: 10.1002/cjg2.80

Google Scholar

[7] Stott, P. A., Stone, D. A., Allen, M. R. 2004. Human contribution to the European heatwave of 2003. Nature 432, 610–613.

DOI: 10.1038/nature03089

Google Scholar

[8] Dole, R. M. 1978. The objective representation of blocking patterns, The General Circulation: Theory, Modeling and observation. NCAR Colloquim Notes: Summer NCAR/CQ-6+1978-ASP, 404-426

Google Scholar

[9] Charney, J.G., J. Shukla, K. C. Mo. 1981. Comparison of a barotropic blocking theory with observation. J. Atmos. Sci. 38, 762-79.

DOI: 10.1175/1520-0469(1981)038<0762:coabbt>2.0.co;2

Google Scholar

[10] Hartmann D.L., Ghan S. J. 1980. A statistical study of the dynamics of blocking. Mon. Wea. Rev. 108, 1144-1159.

DOI: 10.1175/1520-0493(1980)108<1144:assotd>2.0.co;2

Google Scholar

[11] Shukla, J., K. C. Mo 1983. Seasonal and geographical variation of blocking. Mon. Wea. Rev. 111, 388-402.

DOI: 10.1175/1520-0493(1983)111<0388:sagvob>2.0.co;2

Google Scholar

[12] Zhang C.J., Wu H.B., Wang P.X., Zhang J.J. 1997. North Pacific summer persistent atmospheric circulation anomaly with its effects on China weather. Journal of Nanjing institute of meteorology 20, 282-292.

Google Scholar

[13] Zhang J.J., Chen J.Y., Luo Yong.1992. Conference for long term weather prediction (1986~1990), Beijing: Chinese ocean press, pp.29-35

Google Scholar

[14] Zhu W.J., Sun Z.B. and Ni D.H., Pan Z. 2000. Quantitative depiction of daily evolution for summer Eurasian blocking high. Journal of Nanjing institute of meteorology 23, 514-518

Google Scholar

[15] Yang Y.W. 2003. The East Asia Blocking High Index in Summer during 1951-2001. Chinese Meteorological Monthly 29, 3-7.

Google Scholar

[16] Lejena¨s, H., H. Økland. 1983. Characteristics of Northern Hemisphere blocking as determined from a long timeseries of observational data. Tellus 35A, 350-362.

DOI: 10.1111/j.1600-0870.1983.tb00210.x

Google Scholar

[17] Tibaldi S., F. Molteni. 1990. On the operational predictability of blocking. Tellus 42A, 343-365.

Google Scholar

[18] D,Andrea, F., Tibaldi S., Blackburn M, G. Boer, M. Déqué, M.R, Dix, B. Dugas, L. Ferranti, T. Iwasaki, A. Kitoh, V. Pope, D. Randall, E. Roeckner, D. Straus, W. Stern, H. Van den Dool and D. Williamson. 1998. Northern Hemisphere atmospheric blocking as simulated by 15 atmospheric general circulation models in the period 1979–1988. Climate Dyn., 14, 385–407.

DOI: 10.1007/s003820050230

Google Scholar

[19] Li W., Wang Q.W., Wang X.L. 2007. The Real-time Operational System of Monitoring and Diagnostics on the Northern Hemisphere Blocking High. Chinese Meteorological Monthly, 33, 77-81.

Google Scholar

[20] Pelly J. L., Hoskins B. J.2003. A new perspective on blocking. J. Atmos. Sci. 60, 743-755.

DOI: 10.1175/1520-0469(2003)060<0743:anpob>2.0.co;2

Google Scholar

[21] Zhu Q.G., Lin J.R. and Shou S.W., Tang D.S.1981. Principle and method of modern meteorology. Beijing: China Meteorological Press, pp.103-104.

Google Scholar

[22] Li F., Ding Y.H. 2004. Statistical characteristic of atmospheric blocking in the Eurasia high-mid latitudes based on recent 30-years. ACTA meteorological SINICA 62, 347-354.

Google Scholar

[23] Shi X.J., Zhi X.F. 2007. Statistical Characteristics of Blockings in Eurasia from 1950 to 2004. Journal of Nanjing institute of meteorology 30, 338-344.

Google Scholar

[24] Kalnay, E., M. Kanamitsu, R. Kisler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G.White, J. Woolen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K.C. Mo, C. Ropelowski, J. Wang, A. Leetmaa, R. Reynolds, R. Jenne, D. Joseph.1996. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Met. Soc. 77, 437- 471.

DOI: 10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2

Google Scholar

[25] Wu R.S. 1999. principle of modern meteorology. Beijing: Higher Education Press, pp.289-291.

Google Scholar

[26] Horel, J. D. 1985. Persistence of Winter time 500 mb Height Anomalies over the Central Pacific. Mon. Wea. Rev. 113, 2043-2048.

DOI: 10.1175/1520-0493(1985)113<2043:powmha>2.0.co;2

Google Scholar

[27] Dole, R. M., Gordon N. D. 1983. Persistent anomalies of the extratropical Northern Hemisphere wintertime circulation: Geographical distribution and regional persistent characteristics. Mon. Wea. Rev. 111, 1567-1586.

DOI: 10.1175/1520-0493(1983)111<1567:paoten>2.0.co;2

Google Scholar