Simultaneous Analysis of Cyromazine, Sulfonamides and Tetracyclines in Animal Wastewater and Soil Samples by Optimized LC-MS/MS

Article Preview

Abstract:

In order to predict the main species of veterinary drugs in the environment, cyromazine (CY), sulfonamides (SAs) and tetracyclines (TCs) were studied in animal wastewater and soil by liquid chromatography-tandem mass spectrometry. In the method, the reversed-phase column of C8 column, the HLB solid phase extraction column, the 0.1% formic acid acetonitrile-water solution mobile phase with gradient elution were used. The flow rate was 0.30 mL/min, the detection mode was multiple reaction monitoring (MRM) with positive ion electro spray ionization and the injection volume was 10 μL. The quantification limit of the method (MQL) was 5ng/L for CY, 25ng/L for SAs, and 50 ng/L TCs in animal wastewater samples. In soil samples, MQL was 25µg/kg for CY, 40µg/kg for SAs, and 50µg/kg for TCs. The correlation coefficient was higher than 0.99. Recoveries of CY, SAs and TCs at fortified levels were higher than 61%, with relative standard deviation of 0.84%-6.49%.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 518-523)

Pages:

1611-1615

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Kümmerer K. Chemosphere Vol. 75 (2009), pp.417-434.

Google Scholar

[2] Boxall ABA, Blackwell PA, Cavallo R, Kay P, Tolls J. Toxicol. Lett. Vol. 131 (2002), pp.19-28.

Google Scholar

[3] Sukul P, Spiteller M. Rev. Environ. Contam. Toxicol Vol. 187 (2006), pp.67-101.

Google Scholar

[4] Servais P, Passerat J. Sci. Total. Environ. Vol. 408 (2009), pp.365-372.

Google Scholar

[5] Figueira V, Serra E, Manaia CM. Sci. Total. Environ. Vol. 409 (2011), pp.1017-1023.

Google Scholar

[6] Fritz, J.W., Zuo, Y. Food Chem. Vol.105 (2007), pp.1297-1301.

Google Scholar

[7] Keiding, J. Bull Entomol. Res. Vol. 89 Suppl. 1 (1999) pp.9-67.

Google Scholar

[8] Förster, M., Laabs, V., Lamshöft, M., Groeneweg, J., Zühlke, S., Spiteller, M., Krauss, M., Kaupenjohann, M., Amelung, W. Environ. Sci. Technol. Vol. 43 (2009), pp.1824-1830.

DOI: 10.1021/es8026538

Google Scholar

[9] Heise, J., Höltge, S., Schrader, S., Kreuzig, R. Chemosphere Vol.65 (2006), pp.2352-2357.

DOI: 10.1016/j.chemosphere.2006.04.084

Google Scholar

[10] Gustavo Tayar Peres a, Susanne Rath b, Felix Guillermo Reyes. Food Control (2009), pp.1-6.

Google Scholar

[11] Yang S, Cha J, Carlson K. J. Chromatogr. A Vol. 1097 (2005), pp.40-53.

Google Scholar

[12] Tong, L., Li, P., Wang, Y., Zhu, K. Chemosphere Vol. 74 (2009), pp.1090-1097.

Google Scholar

[13] Li B, Zhang T, Xu Z, Fang HH. Anal. Chim. Acta. Vol. 645 (2009), pp.64-72.

Google Scholar

[14] Choi, K.J., Kim, S.G., Kim, C.W., Kim, S.H. Chemosphere Vol. 66 (2007), pp.977-984.

Google Scholar

[15] Verma, B., Headley, J.V., Robarts, R.D. J. Environ. Sci. Heal. A Vol. 42 (2007), pp.109-117.

Google Scholar