[1]
Brix, H., 1999. How 'green' are aquaculture, constructed wetlands and conventional wastewater treatment systems? Water Science and Technology 40, 45-50.
DOI: 10.2166/wst.1999.0133
Google Scholar
[2]
Vymazal, J., 2005. Constructed wetlands for wastewater treatment. Ecological Engineering 25, 475-477.
DOI: 10.1016/j.ecoleng.2005.07.002
Google Scholar
[3]
Garcia, J., Rousseau, D.P.L., Morato, J., Lesage, E., Matamoros, V., Bayona, J.M., 2010. Contaminant removal processes in subsurface-flow constructed wetlands: A Review. Critical Reviews in Environmental Science and Technology 40, 561-661.
DOI: 10.1080/10643380802471076
Google Scholar
[4]
Zhao, Y., Sun, G., Allen, S., 2004. Purification capacity of a highly loaded laboratory scale tidal flow reed bed system with effluent recirculation. Science of the Total Environment 330, 1-8.
DOI: 10.1016/j.scitotenv.2004.03.002
Google Scholar
[5]
Wood, J., Fernandez, G., Barker, A., Gregory, J., Cumby, T., 2007. Efficiency of reed beds in treating dairy wastewater. Biosystems Engineering 98, 455-469.
DOI: 10.1016/j.biosystemseng.2007.09.022
Google Scholar
[6]
Mbuligwe, S.E., 2005. Comparative treatment of dye-rich wastewater in engineered wetland systems (EWSs) vegetated with different plants. Water Research 39, 271-280.
DOI: 10.1016/j.watres.2004.09.022
Google Scholar
[7]
Justin, M.Z., Zupancic, M., 2009. Combined purification and reuse of landfill leachate by constructed wetland and irrigation of grass and willows. Desalination 246, 157-168.
DOI: 10.1016/j.desal.2008.03.049
Google Scholar
[8]
Scholes, L., Shutes, R., Revitt, D., Purchase, D., Forshaw, M., 1999. The removal of urban pollutants by constructed wetlands during wet weather. Water Science and Technology 40, 333-340.
DOI: 10.2166/wst.1999.0179
Google Scholar
[9]
Kadlec, R., Wallace, S., 2009. Treatment wetlands, 2nd ed. CRC Press, Boca Raton, Florida.
Google Scholar
[10]
Wiessner, A., Kappelmeyer, U., Kuschk, P., Kästner, M., 2005a. Sulphate reduction and the removal of carbon and ammonia in a laboratory-scale constructed wetland. Water Research 39, 4643-4650.
DOI: 10.1016/j.watres.2005.09.017
Google Scholar
[11]
Paredes, D., Kuschk, P., Mbwette, T., Stange, F., Müller, R., Köser, H., 2007b. New aspects of microbial nitrogen transformations in the context of wastewater treatment–a review. Engineering in Life Sciences 7, 13-25.
DOI: 10.1002/elsc.200620170
Google Scholar
[12]
Carley, B., Mavinic, D., 1991. The effects of external carbon loading on nitrification and denitrification of a high-ammonia landfill leachate. Research Journal of the Water Pollution Control Federation, 51-59.
Google Scholar
[13]
Paredes, D., Kuschk, P., Köser, H., 2007a. Influence of plants and organic matter on the nitrogen removal in laboratory-scale model subsurface flow constructed wetlands inoculated with anaerobic ammonium oxidizing bacteria. Engineering in Life Sciences 7, 565-576.
DOI: 10.1002/elsc.200700030
Google Scholar
[14]
Stein, O.R., Borden-Stewart, D.J., Hook, P.B., Jones, W.L., 2007. Seasonal influence on sulfate reduction and zinc sequestration in subsurface treatment wetlands. Water Research 41, 3440-3448.
DOI: 10.1016/j.watres.2007.04.023
Google Scholar
[15]
Armstrong, J., Afreen-Zobayed, F., Armstrong, W., 1996. Phragmites die-back: sulphide and acetic acid-induced bud and root death, lignifications, and blockages within aeration and vascular systems. New Phytologist 134, 601-614.
DOI: 10.1111/j.1469-8137.1996.tb04925.x
Google Scholar
[16]
Aesoy, A., Odegaard, H., Bentzen, G., 1998. The effect of sulphide and organic matter on the nitrification activity in a biofilm process. Water Science & Technology 37, 115-122.
DOI: 10.2166/wst.1998.0028
Google Scholar
[17]
Tretiach, M., Baruffo, L., 2001. Effects of H2S on CO2 gas exchanges and growth rates of the epiphytic lichen Parmelia sulcata Taylor. Anglais 31, 35-46.
Google Scholar
[18]
Szögi, A., Hunt, P., Sadler, E., Evans, D., 2004. Characterization of oxidation-reduction processes in constructed wetlands for swine wastewater treatment. Applied Engineering in Agriculture 20, 189-200.
DOI: 10.13031/2013.15891
Google Scholar
[19]
Faulwetter, J.L., Gagnon, V., Sundberg, C., Chazarenc, F., Burr, M.D., Brisson, J., Camper, A.K., Stein, O.R., 2009. Microbial processes influencing performance of treatment wetlands: A review. Ecological Engineering 35, 987-1004.
DOI: 10.1016/j.ecoleng.2008.12.030
Google Scholar
[20]
Chen, K.Y., Morris, J.C., 1972. Kinetics of oxidation of aqueous sulfide by oxygen. Environmental Science & Technology 6, 529-537.
Google Scholar
[21]
Elberling, B., Nicholson, R., Reardon, E., Tibble, R., 1994. Evaluation of sulphide oxidation rates: a laboratory study comparing oxygen fluxes and rates of oxidation product release. Canadian Geotechnical Journal 31, 375-383.
DOI: 10.1139/t94-045
Google Scholar
[22]
Wiessner, A., Kappelmeyer, U., Kuschk, P., Kastner, M., 2005b. Influence of the redox condition dynamics on the removal efficiency of a laboratory-scale constructed wetland. Water Research 39, 248-256.
DOI: 10.1016/j.watres.2004.08.032
Google Scholar
[23]
Wiessner, A., Rahman, K.Z., Kuschk, P., Kästner, M., Jechorek, M., 2010. Dynamics of sulphur compounds in horizontal sub-surface flow laboratory-scale constructed wetlands treating artificial sewage. Water Research 44, 6175-6185.
DOI: 10.1016/j.watres.2010.07.044
Google Scholar
[24]
Kappelmeyer, U., Wießner, A., Kuschk, P., Kästner, M., 2002. Operation of a universal test unit for planted soil filters - planted fixed bed reactor. Engineering in Life Sciences 2, 311-315.
DOI: 10.1002/1618-2863(20021008)2:10<311::aid-elsc311>3.0.co;2-9
Google Scholar
[25]
Beuth Verlag GmbH, H., 1981. German standard methods for the analysis of water, wastewater and sludge; Bio-assays (Group L): Determination of Biodegradability by Use of Special Delivery Methods of Analysis (L 24), (In German).
Google Scholar
[26]
Thmeier, J., Rabenstein, A., Langer, M., Fischer, U., 1997. Detection of traces of oxidized and reduced sulfur compounds in small samples by combination of different high-performance liquid chromatography methods. Journal of Chromatography A 760, 295-302.
DOI: 10.1016/s0021-9673(96)00809-6
Google Scholar
[27]
Klüber, H., Conrad, R., 1998. Effects of nitrate, nitrite, NO and N2O on methanogenesis and other redox processes in anoxic rice field soil. FEMS Microbiology Ecology 25, 301-318.
DOI: 10.1016/s0168-6496(98)00011-7
Google Scholar
[28]
Mohanakrishnan, J., Gutierrez, O., Sharma, K., Guisasola, A., Werner, U., Meyer, R., Keller, J., Yuan, Z., 2009. Impact of nitrate addition on biofilm properties and activities in rising main sewers. Water Research 43, 4225-4237.
DOI: 10.1016/j.watres.2009.06.021
Google Scholar
[29]
Mathioudakis, V., Vaiopoulou, E., Aivasidis, A., 2005. Addition of nitrate for odor control in sewer networks: laboratory and field experiments. Global NEST 8, 37-42.
DOI: 10.30955/gnj.000370
Google Scholar
[30]
Hubert, C., Voordouw, G., 2007. Oil field souring control by nitrate-reducing sulfurospirillum spp. that outcompete sulfate-reducing bacteria for organic electron donors. Applied and Environmental Microbiology 73, 2644.
DOI: 10.1128/aem.02332-06
Google Scholar
[31]
Jenneman, G., McInerney, M., Knapp, R., 1986. Effect of nitrate on biogenic sulfide production. Applied and Environmental Microbiology 51, 1205.
DOI: 10.1128/aem.51.6.1205-1211.1986
Google Scholar
[32]
Sorensen, J., 1978b. Occurrence of nitric and nitrous oxides in a coastal marine sediment. Applied and Environmental Microbiology 36, 809-813.
DOI: 10.1128/aem.36.6.809-813.1978
Google Scholar
[33]
Poduska, R., Anderson, B., 1981. Successful storage lagoon odor control. Journal of Water Pollution Control Federation 53, 299-310.
Google Scholar
[34]
Ponnamperuma, F., 1972. The chemistry of submerged soils. Advances in Agronomy 24, 29-96.
Google Scholar
[35]
Eckford, R., Fedorak, P., 2004. Using nitrate to control microbially-produced hydrogen sulfide in oil field waters. Studies in Surface Science and Catalysis 151, 307-340.
DOI: 10.1016/s0167-2991(04)80152-6
Google Scholar
[36]
Chidthaisong, A., Conrad, R., 2000. Turnover of glucose and acetate coupled to reduction of nitrate, ferric iron and sulfate and to methanogenesis in anoxic rice field soil. FEMS Microbiology Ecology 31, 73-86.
DOI: 10.1111/j.1574-6941.2000.tb00673.x
Google Scholar
[37]
Scholten, J.C.M., van Bodegom, P.M., Vogelaar, J., van Ittersum, A., Hordijk, K., Roelofsen, W., Stams, A.J.M., 2002. Effect of sulfate and nitrate on acetate conversion by anaerobic microorganisms in a freshwater sediment. FEMS Microbiology Ecology 42, 375-385.
DOI: 10.1111/j.1574-6941.2002.tb01027.x
Google Scholar
[38]
Percheron, G., Bernet, N., Moletta, R., 1999. Interactions between methanogenic and nitrate reducing bacteria during the anaerobic digestion of an industrial sulfate rich wastewater. FEMS Microbiology Ecology 29, 341-350.
DOI: 10.1111/j.1574-6941.1999.tb00625.x
Google Scholar
[39]
Zhu, G., Jetten, M.S.M., Kuschk, P., Ettwig, K.F., Yin, C., 2010. Potential roles of anaerobic ammonium and methane oxidation in the nitrogen cycle of wetland ecosystems. Applied Microbiology and Biotechnology 86, 1043-1055.
DOI: 10.1007/s00253-010-2451-4
Google Scholar
[40]
Dapena-Mora, A., Fernández, I., Campos, J., Mosquera-Corral, A., Méndez, R., Jetten, M., 2007. Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production. Enzyme and Microbial Technology 40, 859-865.
DOI: 10.1016/j.enzmictec.2006.06.018
Google Scholar
[41]
Verhagen, F.J.M., Duyts, H., Laanbroek, H.J., 1992. Competition for ammonium between nitrifying and heterotrophic bacteria in continuously percolated soil columns. Applied and Environmental Microbiology 58, 3303.
DOI: 10.1128/aem.58.10.3303-3311.1992
Google Scholar
[42]
Christensen, P.B., Glud, R.N., Dalsgaard, T., Gillespie, P., 2003. Impacts of longline mussel farming on oxygen and nitrogen dynamics and biological communities of coastal sediments. Aquaculture 218, 567-588.
DOI: 10.1016/s0044-8486(02)00587-2
Google Scholar
[43]
Aelion, C., Warttinger, U., 2009. Low sulfide concentrations affect nitrate transformations in freshwater and saline coastal retention pond sediments. Soil Biology and Biochemistry 41, 735-741.
DOI: 10.1016/j.soilbio.2009.01.015
Google Scholar
[44]
Sorensen, J., 1978a. Denitrification rates in a marine sediment as measured by the acetylene inhibition technique. Applied and Environmental Microbiology 36, 139-142.
DOI: 10.1128/aem.36.1.139-143.1978
Google Scholar