Nitrogen and Phosphorus Removal from Simulated Wastewater with Aquatic Macrophytes

Article Preview

Abstract:

This study focused on the comparisons between nitrogen and phosphorus removal rates from the simulated wastewater using various kinds of aquatic plants (4 emergent and 3 floating plants). Results showed that aquatic plants has a significant effect on the removal of NO3--N and TP, but has a less effect on NH4+-N. Among the four emergent plants, the order of NO3--N removal capacities was: S. sagittifolia > S. tabernaemontani > T. latifolia > A. calamus. But for TP, the order was: T. latifolia > A. calamus > S. tabernaemontani > S. sagittifolia. To the floating plants, the order of NO3--N and TP removal capacities were: E. crassipes > P. stratiotes. The ANOVA analyses showed that there was a significant difference between planted treatments and unplanted treatment for the removal of NO3--N and TP. The study suggests that the treatment of simulated wastewater using the aquatic macrophytes was effective in the removal of nutrients.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 518-523)

Pages:

2597-2603

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Li, Y.J. Wu, Z.L. Yu, G.P. Sheng and H.Q. Yu: Water Research, Vol. 43 (2009) No.5, p.1247.

Google Scholar

[2] R.D. Sooknah and A.C. Wilkie: Ecological Engineering, Vol. 22 (2004) No.1, p.27.

Google Scholar

[3] Q.M. Xian, L.X. Hu, H.C. Chen, Z.Z. Chang and H.X. Zou: Journal of Environmental Management, Vol. 91 (2010) No.12, p.2657.

Google Scholar

[4] H.M. Wu, J. Li, P.Z. Zhang, J.Y. Zhang, H.J. Xie and B. Zhang: Ecological Engineering, Vol. 37 (2011) No.4, p.560.

Google Scholar

[5] H. Brix: Water Science and Technology, Vol. 40 (1999) No.3, p.45.

Google Scholar

[6] N. Vaillant, F. Monnet, H. Sallanon, A. Coudret and A. Hitmi: Chemosphere, Vol. 50 (2003) No.1, p.121.

DOI: 10.1016/s0045-6535(02)00371-5

Google Scholar

[7] J. Coleman, K. Hench, K. Garbutt, A. Sexstone, G. Bissonnelte and J. Skousen: Water, Air and Soil Pollution, Vol. 128 (2001) No.3-4, p.283.

DOI: 10.1023/a:1010336703606

Google Scholar

[8] C.C. Tanner: Wetlands Ecological Manage, Vol. 9 (2001) No.1, p.49.

Google Scholar

[9] J. Brisson and F. Chazarenc: Science of the Total Environment, Vol. 407 (2009) No.13, p.3923.

Google Scholar

[10] T. Bindu, V.P. Sylas, M. Mahesh, P.S. Rakesh and E.V. Ramasamy: Ecological Engineering, Vol. 33 (2008) No.1, p.68.

DOI: 10.1016/j.ecoleng.2008.02.007

Google Scholar

[11] D.O. Huett, S.G. Morris, G. Smith and N. Hunt: Water Research, Vol. 39 (2005) No.14, p.3259.

Google Scholar

[12] APHA: Standard Methods for the Examination of Water and Wastewater (20th ed. American Public Health Association, Washington DC 1998)

Google Scholar

[13] USEPA: Methods for Chemical Analysis of Water and Wastes EPA-600/4-79-020 (Revised March 1983) (US Environmental Protection Agency, Cincinnati OH 1983)

Google Scholar

[14] P.M. Ayyasamy, S. Rajakumar, M. Sathishkumar, K. Swaminathan, K. Shanthi, P. Lakshmanaperumalsamy and S. Lee: Desalination, Vol. 242 (2009) No.1-3, p.286.

DOI: 10.1016/j.desal.2008.05.008

Google Scholar

[15] M.H. Hu, Y.S. Ao, X.E. Yang and T.Q. Li: Agricultural water management, Vol. 95 (2008) No.5, p.607.

Google Scholar

[16] W.F. DeBusk and K.R. Reddy: Environmental and Experimental Botany, Vol. 27 (1987) No.2, p.215.

Google Scholar

[17] C. Keffala and A. Ghrabi: Desalination, Vol. 185 (2005) No.1-3, p.383.

Google Scholar

[18] C.C. Tanner, J.P,S. Sukias and M.P. Upsdell: Water Science Technology, Vol. 40 (1999) No.3, p.147.

Google Scholar