[1]
Chang, H. Ted, Wu, N.M., Zhu, F.Q., 2000. A kinetic model for photocatalytic degradation of organic contaminants in a thin-film TiO2 catalyst. Wat. Res. 34, 407-416.
DOI: 10.1016/s0043-1354(99)00247-x
Google Scholar
[2]
Cunningham, J., Al-Sayyed, G., Sedlak, P., Caffrey, J., 1999. Aerobic and anaerobic TiO2-photocatalysed purifications of waters containing organic pollutants. Catal. Today 53, 145–158
DOI: 10.1016/s0920-5861(99)00109-1
Google Scholar
[3]
Cunningham, J., Srijaranal, S., 1988. Isotope-Effect Evidence for Hydroxyl Radical Involvement in Alcohol Photo-Oxidation Sensitized by TiO2 in Aqueous Suspension. Photochem. Photobiol. A: Chem. 43, 329 - 335.
DOI: 10.1016/1010-6030(88)80029-7
Google Scholar
[4]
Gerischer, H., Heller, A., 1991. The role of oxygen in photooxidation of organic molecules on semiconductor particles. J. Phys. Chem. 95, 5261 - 5267.
DOI: 10.1021/j100166a063
Google Scholar
[5]
Harbour, J.R. Hair, M.L., Hair M.L., 1985. Photogeneration of hydrogen peroxide in aqueous TiO2 dispersions. Can. J. Chem. 63, 204-209
DOI: 10.1139/v85-032
Google Scholar
[6]
H. Hidaka, Y. Asai, J. Zhao, K. Nohara, Pelizzetti, Serpone, N., 1995. Photoelectrochemical decomposition of surfactants on a TiO2/TCO particulate film electrode assembly. J. Phys. Chem. 99, 8244-8248.
DOI: 10.1021/j100020a056
Google Scholar
[7]
Hugul, M., Boz, I., Apak, R., 1999. Photocatalytic decomposition of 4-chlorophenol over oxide catalysts. J. Hazardous Materials B 64, 313-322.
DOI: 10.1016/s0304-3894(98)00272-6
Google Scholar
[8]
Kim, D.H., Anderson, M.A., 1994. Photoelectrocatalystic degradation of formic acid using a porous TiO2 thin-film electrode. Environ. Sci. Technol. 28, 479-483.
DOI: 10.1021/es00052a021
Google Scholar
[9]
Kim, D.H., Anderson, M.A., 1996. Solution factors affecting the photocatalytic and photoelectrocatalytic degradation of formic acid using supported TiO2 thin film. J. Photochem. Photobiol. A 94, 221-229.
DOI: 10.1016/1010-6030(95)04178-8
Google Scholar
[10]
Lin, S.S., Chen, C.L., Chang, D.J., Chen, C.C., 2002. Catalytic wet air oxidation of phenol by various CeO2 catalysts. Wat. Res. 36, 3009-3014.
DOI: 10.1016/s0043-1354(01)00539-5
Google Scholar
[11]
Maurino, V., Minero, C., Pelizzetti, E., Piccinini, P., Serpone, N., Hidaka, H., 1997. The fate of organic nitrogen under photocatalytic conditions: degradation of nitrophenols and aminophenols on irradiated TiO2. J. Photochem and Photobio A: Chem. 109, 171-176.
DOI: 10.1016/s1010-6030(97)00124-x
Google Scholar
[12]
Ollis, D.F., 1985. Contaminant degradation in water. Environ. Sci. Technol. 19, 480-484.
Google Scholar
[13]
Ollis, D.E., Pellizzetti, E., Serpone, N., 1991. Photocatalytic destruction of water contaminants. Environ. Sci. Technol. 25, 1523-1529.
Google Scholar
[14]
Sosnin, E.A., Oppenlander, T., Tarasenko, V.F., 1996. Application of capacitive and barrier discharge excilamps in photoscience. J. Photochem. Photobiol. C 2006, 145-163.
DOI: 10.1016/j.jphotochemrev.2006.12.002
Google Scholar
[15]
Vinodgopal, K., Hotchandani, S., Kamat, P.V., 1993. Electrochemically assisted photocatalysis: TiO2 particulate film electrodes for photocatalytic degradation of 4-chlorophenol. J. Phys. Chem. 97, 9040-9044.
DOI: 10.1021/j100137a033
Google Scholar
[16]
Vinodgopal, K., Stafford, U., Gray, K.A., Kamat, P.V., 1994. Electrochemically assisted photocatalysis, 2. The role of oxygen and reaction intermediates in the degradation of 4-chlorophenol on immobilized TiO2 particulate films. J. Phys. Chem. 98, 6797-6803.
DOI: 10.1021/j100078a023
Google Scholar
[17]
Weeks, J. L., Meaburn, G. M., Gordon, S., 1963. Absorption coefficients of liquid water and aqueous solution in the far ultraviolet. Radiat. Res. 19, 559-567.
DOI: 10.2307/3571475
Google Scholar