Self-Propagating High-Temperature Synthesis for Immobilization of Simulated Radioactive Sandy Soil Waste

Article Preview

Abstract:

The immobilization of simulated radioactive sandy soil waste by using self-propagating high-temperature synthesis (SHS) was investigated. The products were characterized by density, X-ray diffraction, and scanning electron microscope. The leaching rate of tracer element was measured by the method of PCT (product consistency test). The SHS immobilization typically results in products containing amorphous phase and crystalline phase. The volume density of the final product is over 3.0g/cm3. The tracer element Ce in the final product mainly forms crystalline phase of CeAl11O18 and Ce2SiO5 when the amount of CeO2 in the raw material is large than 1%. The leaching rate of Ce for 28 days is about 10-5 g•m-2•d-1,which is much lower than that of the borosilicate glass solid form. the leaching rates of Ca, Si, Al and Fe during 28 days are about 10-3~10-4 g•m-2•d-1

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 518-523)

Pages:

2797-2801

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Barnes, S. Cota, J. Deckers, et al. IAEA TECDOC-1527, VIENNA: IAEA, (2006).

Google Scholar

[2] M. I. Ojovan, W. E. Lee. London: Elsevie (2005), p.229–232.

Google Scholar

[3] A. P. Kobelev, S. V. Stefanovskii, V. V. Lebedev, et al. Atomic Energy, vol.104 (2008), p.381–386Y.

Google Scholar

[4] T. V. Barinova, I. P. Borovinskaya, V. I. Ratnikov, et al. Radiochemistry, vol.50 (2008), p.321–323.

Google Scholar

[5] R S. E. Vinokurov, Y. M. Kulyako, S.A. Perevalov, et al. C. R. Chimie, vol 10 (2007) p.1128–1130.

Google Scholar

[6] T. V. Barinova, I. P. Borovinskaya, V. I. Ratnikov,et al. Radiochemistry, vol.50 (2008), p.316–320.

Google Scholar

[7] E T. V. Barinova, I. P. Borovinskaya, V. I. Ratnikov, et al. Radiochemistry, vol.50 (2008), p.321–323.

Google Scholar

[8] R. Z. Zhang, Z. M. Guo, C. C. Jia, et al. J University of Science and Technology Beijing, vol.26 (2004), p.485–488.

Google Scholar

[9] E. M. Glagovsky, A. V. Kouprine, L. F. Pelevine. Journal of Physics, vol.53A (2003), pp. A657–663.

Google Scholar

[10] R. Z. Zhang, Z. M. Guo, C. C. Jia, et al. J University of Science and Technology Beijing, vol.26 (2004), p.485–488. (In Chinese)

Google Scholar

[11] X. Lu, Z. M. Guo, S. G. Luo, et al. J Chin Ceram Soc, vol. 31 (2003), p.205–208. (In Chinese)

Google Scholar

[12] M. Muthuraman, A. N. Dhas, K. C. Patil. J Mater Sci, vol.7 (1994), pp.977-987.

Google Scholar

[13] I. P. Borovinskaya, T. V. Barinova, V. I. Ratnikov, et al. inter.SHS, vol.7 (1998), p.129–133.

Google Scholar

[14] T. V. Barinova, I. P. Borovinskaya. Key Engineering Materials, vol.217 (2002), p.193–200.

Google Scholar

[15] E. M. Glagovskii, S. V. Yudintsev, A. V. Kuprin, et al. adionchemistry, vol43 (2001), p.557–562.

Google Scholar

[16] O. K. Karlina, G. A. Varlackova, M. I. Ojovan, et al. at. Res. Symp. Proc, Vol.663, (2001).

Google Scholar

[17] O. K. Karlina, G. A. Varlackova, M. I. Ojovan, et al. Atomic Energy, vol.90 (2001), p.43–48.

Google Scholar

[18] S. L. Zhang, Q. M. Zhang, Z. G. Qin. Bulletin of the Chinese Ceramic Society, vol.29, p.253–256, 2010. (In Chinese)

Google Scholar

[19] H. S. Kim, C. Y. Joung, B. H. Lee, et al. Journal of Nuclear Materials, vol.378 (2008), p.98–104.

Google Scholar

[20] ASTM Committee. West Conshohocken: ASTM International. (2002)

Google Scholar

[21] X. H. Mao, Z. G. Qin, B. Wu. J Chin Ceram Soc, vol.38 (2010), p.310–315. (In Chinese)

Google Scholar