[1]
Aslanargun, N. Mammadov, B. Yazici and S. Yolacan, Comparaison of ARIMA, Neural Networks and Hybrid Models in Time Series: Tourist Arrival Forecasting: submitted to Journal of Statistical Computation and Simulation (2007).
DOI: 10.1080/10629360600564874
Google Scholar
[2]
A. Zolghadri and F. Cazaurang, Adaptive nonlinear State-Space Modelling for the Prediction of Daily Mean PM10 Concentrations: submitted to Environmental Modelling and Software (2006).
DOI: 10.1016/j.envsoft.2005.04.008
Google Scholar
[3]
A.J. Ansuj, M.E. Camargo, R. Radharamanan and D.G. Petry, Sales Forecasting using Time Series and Neural Networks: submitted to Computers and Industrial Engineering (1996).
DOI: 10.1016/0360-8352(96)00166-0
Google Scholar
[4]
B. Chelani Asha and S. Devotta, Air Quality Forecasting using a Hybrid Autoregressive and Nonlinear Model: submitted to Atmospheric Environment (2006).
DOI: 10.1016/j.atmosenv.2005.11.019
Google Scholar
[5]
B. Lennox, G.A Montaque, A.M. Frith, C. Gent and V. Bevan, Industrial Application of Neural Networks: an Investigation : submitted to Journal of Process Control (2001).
DOI: 10.1016/s0959-1524(00)00027-5
Google Scholar
[6]
C.A. Pope, R.T. Burnett, M.J Thun, E.E. Calle, D. Krewski, K. Ito and G.D. Thurston, Lung Cancer, Cardiopulmonary Mortality and Long-Term Exposure to Fine Particulate Air Pollution: submitted to The Journal of the American Medical Association (2002).
DOI: 10.1001/jama.287.9.1132
Google Scholar
[7]
C.A. Pope, M. Ezzati and D.W. Dockery, Fine Particulate Air Polution and Life Expectancy in the United States: submitted to The New England Journal of Medicine (2009).
DOI: 10.1056/nejmsa0805646
Google Scholar
[8]
D. Jiang, Y. Zhang, X. Hu, J. Tan and D. Shao, Progress in Developing an ANN Model for Air Pollution Index Forecast: submitted to Atmospheric Environment (2004).
DOI: 10.1016/j.atmosenv.2003.10.066
Google Scholar
[9]
D. Rumelhart, G. Hinton and R. Williams, Learning Representations by Back-Propagating Errors: submitted to Nature (1986).
DOI: 10.1038/323533a0
Google Scholar
[10]
D. Wang and W-Z. Lu, Ground Level Ozone Prediction using Multilayer Perceptron trained with an innovate Hybrid Approach: submitted to Ecological Modelling (2006).
DOI: 10.1016/j.ecolmodel.2006.05.031
Google Scholar
[11]
D.P. Connel, J.A. Withum, S.E. Winter and R.M. Statnick, The Steubenville Comprehensive Air Monitoring Program (SCAMP): Associations among Fine Particulate Matter, co-pollutants and Meteorological Conditions: submitted to Journal of the Air and Waste Management Association (2005).
DOI: 10.1080/10473289.2005.10464631
Google Scholar
[12]
D.W. Dockery, C.A. Pope, X. Xu, J. Ware, M. Fay, B. Ferris and F. Speizer, An Association between Air Pollution and Mortality in six U.S cities: submitted to The New England Journal of Medicine (1993).
DOI: 10.1056/nejm199312093292401
Google Scholar
[13]
D.W. Dockery, J. Schwartz and J.D. Spengler, Air Pollution and Daily Mortality: Associations with Particulates and Acid Aerosols: submitted to Environmental Research (1992).
DOI: 10.1016/s0013-9351(05)80042-8
Google Scholar
[14]
F. Laden, L.M. Neas, D.W Dockery and J. Schwartz, Association of Fine Particulate Matter from Different Sources with Daily Mortality in six U.S Cities: submitted to Environmental Health Perspective (2000).
DOI: 10.1289/ehp.00108941
Google Scholar
[15]
G. Box and G. Jenkins: Times Series Analysis: Forecasting and Control (Holden-Day Publications, San Francisco 1996).
Google Scholar
[16]
G. Corani, Air Quality Prediction in Milan: Feed-Forward Neural Networks pruned Neural Networks and Lazy Learning: submitted to Ecological Modelling (2005).
DOI: 10.1016/j.ecolmodel.2005.01.008
Google Scholar
[17]
G. Zhang, E. Patuwo and M.Y Hu, Forecasting with Artificial Neural Networks: the State of the Art: submitted to International Journal of Forecasting (1998).
Google Scholar
[18]
G. Zhang, in: Neural Networks in Business Forecasting, Idea Group Publishing , USA (2004).
Google Scholar
[19]
G.P. Zhang, Series Forecasting using a Hybrid ARIMA and Neural Network Model: submitted to Neurocomputing (2003).
Google Scholar
[20]
Pulido-Calvo and M.M. Portela, Application of Neural Approaches to one-step Daily Folw Forecasting in Portiguese Watersheds: submitted to Journal of Hydrology (2007).
DOI: 10.1016/j.jhydrol.2006.06.015
Google Scholar
[21]
J.B. Ordieres, E.P. Vergara, R.S. Capuz and R.E. Salazar, Neural Network Prediction Model for Fine Particulate Matter(PM2.5) on the US-Mexico border in El Paso(Texas) and Ciudad Juarez (Chihuahua): submitted to Environmental Modelling and Software (2005).
DOI: 10.1016/j.envsoft.2004.03.010
Google Scholar
[22]
J.C Gutiérrez-Estrada, R. Vaconcelos and M.J. Costa, Estimating Fish Community Diversity in the Environmental Features in the Tagus Estuary (Portugal): Multiple Linear Regression and Artificial Neural Network Approaches: submitted to Journal of Applied Ichthyology (2008).
DOI: 10.1111/j.1439-0426.2007.01039.x
Google Scholar
[23]
K. Katsouyanni, G. Touloumi, C. Spix, J. Schwartz, F. Balducci, S. Medina, G. Rosso, B. Wojtyniak, J. Sunyer, A. Ponla and H. Anderson, Short Term Effects of Ambient Sulphur Dioxide and Particulate Matter on Mortality in 12 European Cities: Results fromTime Series Data from the APHEA Project: submitted to Air Pollution and Health: a European approach (1997).
DOI: 10.1136/bmj.314.7095.1658
Google Scholar
[24]
L.A. Dias-Robles, J.C. Ortega, J.C. Fu, G. Reed, J. Chow, J.G. Watson and J.A. Moncada-Herrera, A Hybrid ARIMA and Artificial Neural Networks models to forecast Particulate Matter in Urban Areas: The case of Temuco, Chile: submitted to Atmospheric Environment (2008).
DOI: 10.1016/j.atmosenv.2008.07.020
Google Scholar
[25]
L.P-WG Grace, Simulation of the Daily Average PM10 Concentrations at Ta-Liao with Box-Jenkis Times Series Models and Multivariate Analysis: submitted to Atmospheric Environment (2009).
DOI: 10.1016/j.atmosenv.2009.01.055
Google Scholar
[26]
M. Kantardzic: Data Mining: Concepts, Models, Methods and Algorithms (Weley-IEE press, Louisville 2002).
Google Scholar
[27]
M. Parizeau: Réseaux de Neurones (Université LAVAL, Laval, 2004).
Google Scholar
[28]
P. Goyal, A.T. Chan and N. Jaiswal, Statistical Models for the Prediction of Respirable Suspended Particulate Matter in Urban Cities: submitted to Atmospheric Environment (2006).
DOI: 10.1016/j.atmosenv.2005.11.041
Google Scholar
[29]
P. Pérez and J. Reyes, Prediction of Maximum 24-h Average of PM10 Concentrations 30h in advance in Santriago, Chile: submitted to Atmospheric Environment (2002).
DOI: 10.1016/s1352-2310(02)00419-3
Google Scholar
[30]
P. Pérez, A. Trier and J. Reyes, Prediction of PM2.5 Concentrations Several Hours in Advance Using Neural Networks in Santiago, Chile: submitted to Atmospheric Environment (2000).
DOI: 10.1016/s1352-2310(99)00316-7
Google Scholar
[31]
S. Thomas and R.B. Jacko, Model for Forecasting Expressway Fine Particulate Matter and Carbon Monoxide Concentration: Application of Regression and Neural Network Model: submitted to Journal of the Air and Waste Management (2007).
DOI: 10.3155/1047-3289.57.4.480
Google Scholar
[32]
U. Gehring, J. Heinrich, U. Kramer, V. Grote, M. Hochadel, D. Sugiri, M. Kraft, K. Rauchfuss, H.G. Eberwein and H.E. Wichmann: submitted to Epidemiology (2006).
DOI: 10.1097/01.ede.0000224541.38258.87
Google Scholar
[33]
U. Schlink, O. Herbarth, M. Richter, S. Dorling, G. Nunnari, G. Cawley and E. Pelikan, Statistical Models to Assess the Health Effects and to Forecast Ground-Level Ozone: submitted to Environmental Modelling and Software (2006).
DOI: 10.1016/j.envsoft.2004.12.002
Google Scholar