[1]
wastewater engineering: treatment and reuse (fourth edition). Metcalf & eddy Inc. 2003, 1447-1662.
Google Scholar
[2]
Wastewater Sludge: Second Edition. A Global Overview of the Current Status and Future Prospects. Editor(s): Ludovico Spinosa. Publication Date: 06 May 2011 • ISBN: 9781843393887. Pages: 102 • Paperback
Google Scholar
[3]
M.P.J. Weemaes and W.H. Verstraete. Evaluation of current wet sludge disintegration techniques, J. Chem. Technol. Biotechnol. 73: 83-92, 1998.
DOI: 10.1002/(sici)1097-4660(1998100)73:2<83::aid-jctb932>3.0.co;2-2
Google Scholar
[4]
Pavlostathis, S.G., and Gosset, J.M. A kinetic model for anaerobic digestion of biological sludge, Biotechnol. Bioeng. 27: 1519-30, 1986.
Google Scholar
[5]
S. T. L. Harrison, Bacterial cell disruption: a key unit operation in the recovery of intracellular products. Biotechnol. Adv., 9: 217-240, (1991)
DOI: 10.1016/0734-9750(91)90005-g
Google Scholar
[6]
P. Kampas, S.A. Parsons, P. Pearce, S. Ledoux, P. Vale, J. Churchley, E. Cartmell, Mechanical sludge disintegration for the production of carbon source for biological nutrient removal. Water Research, 41, 2007, 1734-1742
DOI: 10.1016/j.watres.2006.12.044
Google Scholar
[7]
C. L. Rai, J. Mueller, Georg Struenkmann and Paruchuri Gangadhar Rao. Microbial growth reduction in sewage sludge by stirred ball mill disintegration and estimation by respirometry. Journal of Chemical Technology and Biotechnology, 2008, 83:269-278
DOI: 10.1002/jctb.1803
Google Scholar
[8]
E. Gonze, S. Pillot, E. Valette, Y. Gonthier, A. Bernis. Ultrasonic t reatment of an aerobic activated sludge in a batch reactor. Chemical Engineering and Processing, 2003, 42: 965 - 975
DOI: 10.1016/s0255-2701(03)00003-5
Google Scholar
[9]
W.J. Park, J.H. Ahn, Seokhwan Hwang, Chan-Ki Lee. Effect of output power, target temperature, and solid concentration on the solubilization of waste activated sludge using microwave irradiation. Bioresource Technology 101 (2010) S13- S16
DOI: 10.1016/j.biortech.2009.02.062
Google Scholar
[10]
C. A. Wilson, J. T. Novak, Hydrolysis of macromolecular components of primary and secondary wastewater sludge by thermal hydrolytic pretreatment. water research, 2009, 43: 4489- 4498
DOI: 10.1016/j.watres.2009.07.022
Google Scholar
[11]
L.H. Zhang, C.B. Xu, Pascale Champagne. Energy recovery from secondary pulp/paper-mill sludge and sewage sludge with supercritical water treatment. Bioresource Technology, 2010, 101: 2713-2721
DOI: 10.1016/j.biortech.2009.11.106
Google Scholar
[12]
L.B. Chu, S.T. Yan, X.H. Xing, A.F. Yu, X.L. Sun, J. Benjamin. Enhanced sludge solubilization by microbubble ozonation. Chemosphere. 2008, 72: 205-212
DOI: 10.1016/j.chemosphere.2008.01.054
Google Scholar
[13]
J. Yang, M. Ji, Y.H. Han, W.H. Liu, X. Q. Zhang. Effect of alkaline and ultrasonic pretreatment on the sludge disintegration. Enbiromental science. 2008, 29(4): 1002-1006, Chinese.
Google Scholar
[14]
Y. Chisti, M.M. Young, Disruption of microbial cells for intracellular products. Enzyme Microb Technol, 1986, 8:194-204.
DOI: 10.1016/0141-0229(86)90087-6
Google Scholar
[15]
J. Kopp, J. Muller, N. Dichtl, J. Schwedes, Anaerobic digestion and dewatering characteristics of mechanically disintegrated excess sludge. Water Sci Technol, 1997, 30:129-136.
DOI: 10.2166/wst.1997.0403
Google Scholar
[16]
A. Winter, Minimization of costs by using disintegration at a full scale anaerobic digestion plant. Wat Sci Technol, 2002, 46:405-412.
DOI: 10.2166/wst.2002.0637
Google Scholar
[17]
J. Mueller, Sewage sludge disintegration as a key steps in sewage sludge treatment. Water Sci Technol, 2000, 41:123-130.
DOI: 10.2166/wst.2000.0151
Google Scholar
[18]
C. L. Rai, J. Mueller, Georg Struenkmann and Paruchuri Gangadhar Rao. Microbial growth reduction in sewage sludge by stirred ball mill disintegration and estimation by respirometry. Journal of Chemical Technology and Biotechnology. 2008, 83:269-278
DOI: 10.1002/jctb.1803
Google Scholar
[19]
U. Schmitz, C.R. Berger, and H. Orth, Protein analysis as a simple method for the quantitative assessment of sewage sludge disintegration, Water Res. 2000, 34(14): 3682-3685,.
DOI: 10.1016/s0043-1354(00)00091-9
Google Scholar
[20]
S. Pilli, P. Bhunia, S. Yan, R.J. LeBlanc, R.D. Tyagi, R.Y. Surampalli. Ultrasonic pretreatment of sludge: A review. Ultrasonics Sonochemi-stry, 2011, 18:1-18.
DOI: 10.1016/j.ultsonch.2010.02.014
Google Scholar
[21]
S. K. Khana, D. Grewell, S. Sung, J.V. Leeuwen. Ultrasound Applications in Wastewater Sludge Pretreatment: A Review. Critical Reviews in Environmental Science and Technology, 2007, 37:277-313.
DOI: 10.1080/10643380600860249
Google Scholar
[22]
F. Jorand, F. Zartarian, F. Thomas, J. C. Block, J. Y. Bottero, G. Villemin, V. Urbain, J. Manem. Chemeical and Structural (2D) Linkage Between Bacteria Within Activated Sludge Flocs. War. Res. 1995,29(7): 1639-1647
DOI: 10.1016/0043-1354(94)00350-g
Google Scholar
[23]
C.F. Forster, N.J.B. Knight, D.A.J. Wase, Flocculating agents of microbial origin, Adv. Biotechnol. Proc. 1985, 211-240.
Google Scholar
[24]
J.K. Vallom, A.J. McLoughlin, Lysis as a factor in sludge flocculation, Water Res. 1984,18:1523-1528.
DOI: 10.1016/0043-1354(84)90127-1
Google Scholar
[25]
C. Biggs, P. Lant, Identifying the mechanisms of activated sludge flocculation, Environmental Engineering Research Event, Avoca Beach, New South N, Australia, 1998,6-9
Google Scholar