Mechanism Study of Excess Sludge Disintegration by Stirred Ball Mill

Article Preview

Abstract:

Stirred ball mill(SBM) method is one of the usually method which applied in large scale application cases of sludge disintegration. This study focuses on investigation the mechanism of sludge disintegration by SBM method. Besides analysis general indicators of SCOD, TN, TP and calculated the disintegration rate of COD (DDCOD). The result indicated the SCOD and DDCOD increased with the disintegration time. As DDCOD increased to the highest of 18.6% at the treated time of 60min, it shown that SBM was not more efficient in disintegration of biomass into so smaller particle that easily dissolved in water.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 518-523)

Pages:

3403-3407

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] wastewater engineering: treatment and reuse (fourth edition). Metcalf & eddy Inc. 2003, 1447-1662.

Google Scholar

[2] Wastewater Sludge: Second Edition. A Global Overview of the Current Status and Future Prospects. Editor(s): Ludovico Spinosa. Publication Date: 06 May 2011 • ISBN: 9781843393887. Pages: 102 • Paperback

Google Scholar

[3] M.P.J. Weemaes and W.H. Verstraete. Evaluation of current wet sludge disintegration techniques, J. Chem. Technol. Biotechnol. 73: 83-92, 1998.

DOI: 10.1002/(sici)1097-4660(1998100)73:2<83::aid-jctb932>3.0.co;2-2

Google Scholar

[4] Pavlostathis, S.G., and Gosset, J.M. A kinetic model for anaerobic digestion of biological sludge, Biotechnol. Bioeng. 27: 1519-30, 1986.

Google Scholar

[5] S. T. L. Harrison, Bacterial cell disruption: a key unit operation in the recovery of intracellular products. Biotechnol. Adv., 9: 217-240, (1991)

DOI: 10.1016/0734-9750(91)90005-g

Google Scholar

[6] P. Kampas, S.A. Parsons, P. Pearce, S. Ledoux, P. Vale, J. Churchley, E. Cartmell, Mechanical sludge disintegration for the production of carbon source for biological nutrient removal. Water Research, 41, 2007, 1734-1742

DOI: 10.1016/j.watres.2006.12.044

Google Scholar

[7] C. L. Rai, J. Mueller, Georg Struenkmann and Paruchuri Gangadhar Rao. Microbial growth reduction in sewage sludge by stirred ball mill disintegration and estimation by respirometry. Journal of Chemical Technology and Biotechnology, 2008, 83:269-278

DOI: 10.1002/jctb.1803

Google Scholar

[8] E. Gonze, S. Pillot, E. Valette, Y. Gonthier, A. Bernis. Ultrasonic t reatment of an aerobic activated sludge in a batch reactor. Chemical Engineering and Processing, 2003, 42: 965 - 975

DOI: 10.1016/s0255-2701(03)00003-5

Google Scholar

[9] W.J. Park, J.H. Ahn, Seokhwan Hwang, Chan-Ki Lee. Effect of output power, target temperature, and solid concentration on the solubilization of waste activated sludge using microwave irradiation. Bioresource Technology 101 (2010) S13- S16

DOI: 10.1016/j.biortech.2009.02.062

Google Scholar

[10] C. A. Wilson, J. T. Novak, Hydrolysis of macromolecular components of primary and secondary wastewater sludge by thermal hydrolytic pretreatment. water research, 2009, 43: 4489- 4498

DOI: 10.1016/j.watres.2009.07.022

Google Scholar

[11] L.H. Zhang, C.B. Xu, Pascale Champagne. Energy recovery from secondary pulp/paper-mill sludge and sewage sludge with supercritical water treatment. Bioresource Technology, 2010, 101: 2713-2721

DOI: 10.1016/j.biortech.2009.11.106

Google Scholar

[12] L.B. Chu, S.T. Yan, X.H. Xing, A.F. Yu, X.L. Sun, J. Benjamin. Enhanced sludge solubilization by microbubble ozonation. Chemosphere. 2008, 72: 205-212

DOI: 10.1016/j.chemosphere.2008.01.054

Google Scholar

[13] J. Yang, M. Ji, Y.H. Han, W.H. Liu, X. Q. Zhang. Effect of alkaline and ultrasonic pretreatment on the sludge disintegration. Enbiromental science. 2008, 29(4): 1002-1006, Chinese.

Google Scholar

[14] Y. Chisti, M.M. Young, Disruption of microbial cells for intracellular products. Enzyme Microb Technol, 1986, 8:194-204.

DOI: 10.1016/0141-0229(86)90087-6

Google Scholar

[15] J. Kopp, J. Muller, N. Dichtl, J. Schwedes, Anaerobic digestion and dewatering characteristics of mechanically disintegrated excess sludge. Water Sci Technol, 1997, 30:129-136.

DOI: 10.2166/wst.1997.0403

Google Scholar

[16] A. Winter, Minimization of costs by using disintegration at a full scale anaerobic digestion plant. Wat Sci Technol, 2002, 46:405-412.

DOI: 10.2166/wst.2002.0637

Google Scholar

[17] J. Mueller, Sewage sludge disintegration as a key steps in sewage sludge treatment. Water Sci Technol, 2000, 41:123-130.

DOI: 10.2166/wst.2000.0151

Google Scholar

[18] C. L. Rai, J. Mueller, Georg Struenkmann and Paruchuri Gangadhar Rao. Microbial growth reduction in sewage sludge by stirred ball mill disintegration and estimation by respirometry. Journal of Chemical Technology and Biotechnology. 2008, 83:269-278

DOI: 10.1002/jctb.1803

Google Scholar

[19] U. Schmitz, C.R. Berger, and H. Orth, Protein analysis as a simple method for the quantitative assessment of sewage sludge disintegration, Water Res. 2000, 34(14): 3682-3685,.

DOI: 10.1016/s0043-1354(00)00091-9

Google Scholar

[20] S. Pilli, P. Bhunia, S. Yan, R.J. LeBlanc, R.D. Tyagi, R.Y. Surampalli. Ultrasonic pretreatment of sludge: A review. Ultrasonics Sonochemi-stry, 2011, 18:1-18.

DOI: 10.1016/j.ultsonch.2010.02.014

Google Scholar

[21] S. K. Khana, D. Grewell, S. Sung, J.V. Leeuwen. Ultrasound Applications in Wastewater Sludge Pretreatment: A Review. Critical Reviews in Environmental Science and Technology, 2007, 37:277-313.

DOI: 10.1080/10643380600860249

Google Scholar

[22] F. Jorand, F. Zartarian, F. Thomas, J. C. Block, J. Y. Bottero, G. Villemin, V. Urbain, J. Manem. Chemeical and Structural (2D) Linkage Between Bacteria Within Activated Sludge Flocs. War. Res. 1995,29(7): 1639-1647

DOI: 10.1016/0043-1354(94)00350-g

Google Scholar

[23] C.F. Forster, N.J.B. Knight, D.A.J. Wase, Flocculating agents of microbial origin, Adv. Biotechnol. Proc. 1985, 211-240.

Google Scholar

[24] J.K. Vallom, A.J. McLoughlin, Lysis as a factor in sludge flocculation, Water Res. 1984,18:1523-1528.

DOI: 10.1016/0043-1354(84)90127-1

Google Scholar

[25] C. Biggs, P. Lant, Identifying the mechanisms of activated sludge flocculation, Environmental Engineering Research Event, Avoca Beach, New South N, Australia, 1998,6-9

Google Scholar