Structural Characterization of ZnO/AC Composite Prepared from Spent Catalyst of Vinyl Acetate Synthesis

Article Preview

Abstract:

ZnO/AC composite was prepared from spent catalyst of vinyl acetate synthesis by using conventional thermal treatment under CO2 atmosphere. The final composite was obtained with the operating conditions of activation temperature of 950°C, activation time of 120min and the CO2 flow rate of 600ml/min. The structure and surface properties of the ZnO/AC composite were observed and characterized by scanning electron microscope (SEM-EDX), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR) and the UV diffuse reflectance spectra. It was found that the zinc acetate present in the spent catalyst is transformed to zinc oxide (ZnO) after thermal treatment. ZnO particles were well adhered and uniformly distributed onto the carbon surface, forming ZnO/AC composite. The thermal treatment of the spent catalyst gives rise to a material with excellent adsorptive and photocatalytic properties.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 518-523)

Pages:

3483-3487

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Dabek: J. Hazard. Mater. B, Vol. 101, (2003), p.191.

Google Scholar

[2] C. Bao, Y. Zhao, and R. Feng: Journal of Nanjing University (Natural Sciences) in Chinese, Vol. 31, (1995), p.242.

Google Scholar

[3] N. Sobana, M. Swaminathan: Sol. Energy Mater. Sol. C, Vol. 91, (2007), p.727.

Google Scholar

[4] N. Sobana, M. Muruganandam M. Swaminathan: Catalysis Communications, Vol. 9, (2008), p.262.

Google Scholar

[5] A.A. Khodja, T. Sheili, and J.F. Pihichowski: J. Photochem. Photobiol. A: Chem., Vol. 141 (2001), p.231.

Google Scholar

[6] O. Yamamotoa, K. Nakakoshi, and T. Sasamoto: Carbon, Vol. 39, (2001), p.1643.

Google Scholar

[7] Y. Kikuchi, Q. Qian, and M. Machida: Carbon, Vol. 44, (2006), p.195.

Google Scholar

[8] S. Park, H.J. Park, and K. Yoo: Colloids Surf. A, Vol. 300, (2007), p.30.

Google Scholar

[9] Ü. Özgür, Ya.I. Alivov, and C. Liu: J. Appl. Phys., Vol. 98, (2005), pp.041301-1.

Google Scholar

[10] L.Y. Hsu, H. Teng: Fuel Proc. Tech. Vol. 64, (2000), p.155.

Google Scholar

[11] N. Park, Y.J. Lee and J.B. Han: Colloids Surf. A, Vol. 313–314, (2008), p.66.

Google Scholar

[12] X. Wang, P. Hu and Y. Fangli: J. Phys. Chem. C, Vol. 111, (2007), p.6706.

Google Scholar

[13] F. Cesano, D. Scarano and S. Bertarione: J. Photochem. Photobio. A, Vol. 196, (2008), p.143.

Google Scholar

[14] D. Kalpana, K. S. Omkumar, and S. S. Kumar: Electrochimica Acta, Vol.52, (2006), p.1309.

Google Scholar

[15] X. Wei, H. Li and C. Yuan: Microporous and Mesoporous Materials, Vol. 118, (2009), p.307.

Google Scholar

[16] M.A. Bezerra, R. E. Santelli, and E. P. Oliveira: Talanta, Vol.76, (2008), p.965. (xiangying)

Google Scholar

[17] F. Gonen, and Z. Aksu: J. Hazard. Mater., Vol.154, (2008), p.731.

Google Scholar

[18] A.A. Bahgat, E. E. Shaisha, and M. M. Saber: Physica B, Vol. 399, (2007) p.70.

Google Scholar

[19] W. Ho, J.C. Yu, and J. Lin: Langmuir, Vol. 20 (2004), p.5865.

Google Scholar